Year 13 Mock Set\#02 Pure Paper 2

- Advised to print in "A3-booklets", this will allow all questions to be on the left hand side.
- You can also print in A4, double-sided, and two staples on the left
- If instead you print in 2-in-1 settings, first print the second page up to the last page, then print the cover page separately (to allow all questions on the left)

This exam paper has 12 questions, for a total of 100 marks.

Question	Marks	Score
1	7	
2	7	
3	4	
4	9	
5	11	
6	9	
7	6	
8	9	
9	9	
10	12	
11	10	
12	7	
Total:	100	

Andrew Chan

Last updated: 23rd February 2023
1.

Figure 1: https://www.desmos.com/calculator/2xsfs8acda

Figure 1 shows a sketch of the curve with equation

$$
y=\sqrt{x+2} \quad\{-2 \leq x \leq 6\}
$$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the line $x=6$.

The table below shows corresponding values of x and y for $y=\sqrt{x+2}$, rounded to 4 decimal places.

x	-2	0	2	4	6
y	0	1.4142	2	2.4495	2.8284

(a) Use the trapezium rule, with all of the values of y in the completed table, to find an approximate value of the area of R, giving your answer to 3 decimal places.

Use your answer to part (a) to find approximate values of
(b)
(i) $\int_{-2}^{6} \frac{\sqrt{x+2}}{2} d x$
(ii) $\int_{-2}^{6}(2+\sqrt{x+2}) \mathrm{d} x$

Question 1 continued
\qquad

Question 1 continued

Question 1 continued
\qquad
(Total for Question 1 is 7 marks)
2. Given that

$$
2 \log _{4}(2 x+3)=1+\log _{4} x+\log _{4}(2 x-1) \quad\left\{x>\frac{1}{2}\right\}
$$

(a) Show that

$$
\begin{equation*}
4 x^{2}-16 x-9=0 \tag{5}
\end{equation*}
$$

(b) Hence solve the equation

$$
2 \log _{4}(2 x+3)=1+\log _{4} x+\log _{4}(2 x-1) \quad\left\{x>\frac{1}{2}\right\}
$$

\qquad

Question 2 continued
\qquad

Question 2 continued

Question 2 continued
\qquad
(Total for Question 2 is 7 marks)
3. One of the terms in the binomial expansion of $(3+a x)^{6}$, where a is a constant, is $540 x^{4}$

Find the possible values of a.
(4)
\qquad

Question 3 continued
(Total for Question 3 is 4 marks)
4. (a) Given that

$$
\frac{9}{t^{2}(t-3)} \equiv \frac{A}{t}+\frac{B}{t^{2}}+\frac{C}{t-3}
$$

Find the value of the constants A, B and C.
(b)

$$
I=\int_{4}^{12} \frac{9}{t^{2}(t-3)} \mathrm{d} t
$$

Find the exact value of I, giving your answer in the form $\ln (a)-b$, where a and b are positive constants.
\qquad

Question 4 continued
\qquad

Question 4 continued

Question 4 continued
\qquad
(Total for Question 4 is 9 marks)
5. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.

Figure 2: https://www.desmos.com/calculator/g0zwufzqir
Figure 2 shows a sketch the curve with equation

$$
y=2 \cos 3 x-3 x+4 \quad\{x>0\}
$$

where x is measured in radians.
The curve crosses the x-axis at the point P, as shown in Figure 2.
Given that the x-coordinate of P is α,
(a) show that α lies between 0.8 and 0.9

The iteration formula

$$
x_{n+1}=\frac{1}{3} \arccos \left(1.5 x_{n}-2\right)
$$

can be used to find an approximate value for α
(b) Using this iteration formula, with $x_{1}=0.8$, find, to 4 decimal places, the value of
(i) x_{2}
(ii) x_{5}

The point Q and the point R are local minimum points on the curve, as shown in Figure 2. Given that the x-coordinates of Q and R are β and λ respectively, and that they are the two smallest values of x at which local minima occur,
(c) find, using calculus, the exact value of β and the exact value of λ

Question 5 continued
\qquad

Question 5 continued

Question 5 continued
(Total for Question 5 is 11 marks)
6. A curve has equation $y=\mathrm{g}(x)$

Given that

- $\mathrm{g}(x)$ is a cubic expression in which the coefficient of x^{3} is equal to the coefficient of x
- the curve with equation $y=\mathrm{g}(x)$ passes through the origin
- the curve with equation $y=\mathrm{g}(x)$ has a stationary point at $(2,9)$
(a) find $\mathrm{g}(x)$
(b) prove that the stationary point at $(2,9)$ is a maximum.
\qquad

Question 6 continued
\qquad

Question 6 continued

Question 6 continued
(Total for Question 6 is 9 marks)
7. Relative to a fixed origin O, the point A has position vector $6 \mathbf{i}+5 \mathbf{j}$ and the point B has position vector $3 \mathbf{i}+9 \mathbf{j}$
(a) Find $\overrightarrow{A B}$ as a simplified vector in terms of \mathbf{i} and \mathbf{j}

The line $P Q$ is parallel to $A B$. Given that $\overrightarrow{P Q}=12 \mathbf{i}+\lambda \mathbf{j}$
(b) find the value of λ
(c) Find a unit vector parallel to $A B$
\qquad

Question 7 continued
\qquad

Question 7 continued

Question 7 continued
\qquad
(Total for Question 7 is 6 marks)
8. (a) show that the equation

$$
3 \sin (x+\alpha)=5 \sin (x-\alpha)
$$

can be written in the form $\tan x=4 \tan \alpha$
(b) Hence solve, to the nearest integer, the equation

$$
3 \sin (2 y+30)^{\circ}=5 \sin (2 y-30)^{\circ} \quad\{90 \leq y<180\}
$$

\qquad

Question 8 continued
\qquad

Question 8 continued

Question 8 continued
\qquad
(Total for Question 8 is 9 marks)
9.

Figure 3

Figure 2 shows part of the curve equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=2|2 x-5|+3 \quad\{x \geq 0\}
$$

The vertex of the graph is at P as shown.
(a) State the coordinates of P.
(b) Solve the equation $\mathrm{f}(x)=3 x-2$

Given that the equation

$$
\mathrm{f}(x)=k x+2
$$

where k is a constant, has exactly two roots,
(c) find the range of values of k
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 continued
\qquad

Question 9 continued

Question 9 continued
(Total for Question 9 is 9 marks)
10.

Figure 4

Figure 4 shows a sketch of the curve with parametric equations

$$
x=2 t^{2}-6 t, \quad y=t^{3}-4 t, \quad\{t \in \mathbb{R}:-20 \leq t \leq 20\}
$$

(a) Find the coordinates of A and show that B has coordinates $(20,0)$.
(b) Show that the equation of the tangent to the curve at B is

$$
4 x+7 y-80=0
$$

The tangent to the curve at B cuts the curve again at the point P.
(c) Find, using algebra, the x-coordinate of P.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 continued
\qquad

Question 10 continued

Question 10 continued
\qquad
(Total for Question 10 is 12 marks)
11. A circle C has equation

$$
(x-k)^{2}+(y-2 k)^{2}=k+7
$$

where k is a positive constant.
(a) Write down, in terms of k,
(i) the coordinates of the centre of C,
(ii) the radius of C.

Given that the point $P(2,3)$ lies on C,
(b) (i) show that $5 k^{2}-17 k+6=0$
(ii) hence find the possible values of k.

The tangent to the circle at P intersects the x-axis at the point T
Given that $k<2$
(c) calculate the exact area of the triangle $O P T$, where O is the origin.
\qquad

Question 11 continued
\qquad

Question 11 continued

Question 11 continued
\qquad
(Total for Question 11 is 10 marks)
12. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
a_{1} & =p-3 \\
a_{n+1} & =2\left(a_{n}+3\right)^{2}-7
\end{aligned}
$$

where p is a constant.
(a) Find an expression for a_{2} in terms of p, giving your answer in simplest form.

Given that $\sum_{n=1}^{3} a_{n}=p+15$
(b) find the possible values of a_{2}.
\qquad

Question 12 continued
\qquad

Question 12 continued

Question 12 continued
\qquad

Question 12 continued
\qquad
(Total for Question 12 is 7 marks)

Total for paper is 100 marks

