- 1. Three posts P, Q and R, are fixed in that order at the side of a straight horizontal road. The distance from P to Q is 45 m and the distance from Q to R is 120 m. A car is moving along the road with constant acceleration a m s⁻². The speed of the car, as it passes P, is u m s⁻¹. The car passes Q two seconds after passing P, and the car passes R four seconds after passing Q. Find
 - (i) the value of u,
 - (ii) the value of a.

$$20+2(2.5)=45$$

 $20=40$
 $0=20ms^{-1}$

2.	A particle <i>P</i> travels along a straight line through a point <i>O</i> so that at time <i>t</i> its displacement from <i>O</i> is <i>x</i> m, where $x = t^3 - 15t^2 + 62t$	s after passing through O
	Find	
	(a) the initial velocity of <i>P</i> ,	(3)
	(b) the value of t for which <i>P</i> has zero acceleration.	(2)
a)	V=362-306+62	
	When t=0	
	$V = 3(0)^{2} - 30(0) + 62$	·
	V=62ms-1	
b)	6E-30=0	.*
	6E=30 E=5s	
-		

3.

Figure 4

Two particles A and B, of mass 7 kg and 3 kg respectively, are attached to the ends of a light inextensible string. Initially B is held at rest on a rough fixed plane inclined at angle θ to the horizontal, where $\tan \theta = \frac{5}{12}$. The part of the string from B to P is parallel to a line of greatest slope of the plane. The string passes over a small smooth pulley, P, fixed at the top of the plane. The particle A hangs freely below P, as shown in Figure 4. The coefficient of friction between B and the plane is $\frac{2}{3}$. The particles are released from rest with the string taut and B moves up the plane.

- (a) Find the magnitude of the acceleration of B immediately after release. (10)
- (b) Find the speed of B when it has moved 1 m up the plane. (2)

When B has moved 1 m up the plane the string breaks. Given that in the subsequent motion B does not reach P,

(c) find the time between the instants when the string breaks and when B comes to instantaneous rest.

(4)

$$5 \frac{13}{12} = \frac{5}{13}$$

$$\cos \theta = \frac{12}{13}$$

a)
$$R(1)_A: 7g - T = 7a$$
 $R(x)_B: T - \frac{2}{3}R - 3g \sin \theta = 3a$
 $R(x)_B: R = 3g \cos \theta$
 $R = 36g$
 $R = 36g$

Question 3 continued		
b) 5 = 1	V2-121705	
U=0	$V^{2} = V^{2} + 2as$ $V^{2} = \frac{4}{5}9$	
	V - 5 9	
2 7	v=2.8ms-1	
V 9=39 E		
E		
c) When the	string breaks: 3R-3gsin0=3a	
R(K)B: -2	R-3asin0 = 3a	
) " 10	
-24	19 - 159 = 3a	
13	3 13	
	22	
	3g = 3a	
	1=-9	
	<u> </u>	
5	v=U+qt	
U=2.8	0=2.8-gt	<u> </u>
v =0	9t=2.8	
a = -9	96=2.8 6=2.8	
L	9	
	4-0.29	
	6-0.21	
,		
		*

4.

Figure 2

A wooden plank AB has mass 4m and length 4a. The end A of the plank lies on rough horizontal ground. A small stone of mass m is attached to the plank at B. The plank is resting on a small smooth horizontal peg C, where BC = a, as shown in Figure 2. The plank is in equilibrium making an angle α with the horizontal, where $\tan \alpha = \frac{3}{4}$. The coefficient of friction between the plank and the ground is μ . The plank is modelled as a uniform rod lying in a vertical plane perpendicular to the peg, and the stone as a particle. Show that

- (a) the reaction of the peg on the plank has magnitude $\frac{16}{5}$ mg,
- (b) $\mu \geqslant \frac{48}{61}$.

(3)

(1)

(c) State how you have used the information that the peg is smooth.

a) M(A): 4mg × 2acosal + mg × 4acosae = 5 × 129amg cosal = 935a 43mg cosal = 5

b) R(1): R+Scosa = 5mg -> R+64mg = 5mg

 $R(\rightarrow)$: $F = S_{since}$ $\rightarrow F = \frac{48mg}{25}$

 $R = 5 \text{ mg} - \frac{64 \text{ mg}}{25}$ $R = \frac{125 - 64}{25} \text{ mg}$ $R = \frac{61}{25} \text{ mg}$

Question 4 continued
FEMR
48 mg < M × 61 mg
48 ≤ 61 RC
Mu 11 ? 48
c) No friction at the peg

5.

Figure 3

A child playing cricket on horizontal ground hits the ball towards a fence 10 m away. The ball moves in a vertical plane which is perpendicular to the fence. The ball just passes over the top of the fence, which is 2 m above the ground, as shown in Figure 3.

The ball is modelled as a particle projected with initial speed u m s⁻¹ from point O on the ground at an angle α to the ground.

(a) By writing down expressions for the horizontal and vertical distances, from *O* of the ball *t* seconds after it was hit, show that

$$2 = 10 \tan \alpha - \frac{50g}{u^2 \cos^2 \alpha}.$$
 (6)

Given that $\alpha = 45^{\circ}$,

(b) find the speed of the ball as it passes over the fence.

2 = 10 Egnce - 509

$q) (\rightarrow): x = (u\cos\alpha)t$	(6)
(1): y=(usince)t-=2gt2	
10 = (ucosce) t	
E= 10	
UCOSCL	
$G = 2 = (usinac) \left(\frac{10}{ucosac} \right) - \frac{1}{2} \left(\frac{10}{ucosac} \right)$	

Question 5 continued

$$S = 2$$
 $v^2 = v^2 + 2aS$ $U = \frac{\sqrt{2}}{2}U$ $Z^2 = (\frac{\sqrt{2}}{2}U)^2 - 2(g)(2)$

$$\frac{27}{2} = \frac{1}{2} \left(\frac{1009}{8} \right) - 49$$