Further Mathematics B (MEI) Proof by Mathematical Induction (MEI) Andrew Chan Please note that you may see slight differences between this paper and the original. Candidates answer on the Question paper. OCR supplied materials: Additional resources may be supplied with this paper. Other materials required: • Pencil • Ruler (cm/mm)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- · Answer all the questions, unless your teacher tells you otherwise.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Where space is provided below the question, please write your answer there.
- You may use additional paper, or a specific Answer sheet if one is provided, but you must clearly show your candidate number, centre number and question number(s).

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with either a pencil or an asterisk. In History and Geography a *Quality of extended response* question is marked with an asterisk, while a pencil is used for questions in which *Spelling, punctuation and grammar and the use of specialist terminology* is assessed.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 128.
- The total number of marks may take into account some 'either/or' question choices.

Prove by induction that
$$1^2 - 2^2 + 3^2 - 4^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1}\frac{n(n+1)}{2}$$

[8]

2

3

1

(i) Use standard series formulae to show that

$$\sum_{r=1}^{n} [r(r-1) - 1] = \frac{1}{3}n(n+2)(n-2).$$
 (*)

[5]

(ii) Prove (*) by mathematical induction.

[7]

[7]

	1	1	1	1	<i>n</i>
Prove by induction that	$1 \times 3^+$	$\overline{3\times5}$	$+\frac{1}{5\times7}++$	$\frac{1}{(2n-1)(2n+1)}$	$\overline{2n+1}$

4 A sequence is defined by $u_1 = 3$ and $u_{n+1} = 3u_n - 5$. Prove by induction that $u_n = \frac{3^{n-1} + 5}{2}$.

5 A sequence is defined by $u_1 = 8$ and $u_{n+1} = 3u_n + 2n + 5$. Prove by induction that $u_n = 4 (3^n) - n - 3$.

[6]

[6]

You are given that matrix $\mathbf{M} = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$. (a) Prove that, for all positive integers n, $\mathbf{M}^n = \begin{pmatrix} 1-4n & 8n \\ -2n & 1+4n \end{pmatrix}$. [6]

6

(b) Determine the equation of the line of invariant points of the transformation represented by the matrix **M**.

It is claimed that the answer to part (b) is also a line of invariant points of the transformation represented by the matrix \mathbf{M}^{n} , for any positive integer *n*.

(c) Explain *geometrically* why this claim is true.

(d) Verify *algebraically* that this claim is true.

[3]

[2]

[3]

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n-1}{n!} = a - \frac{b}{n!}$$

where *a* and *b* are constants, and *n* is an integer such that $n \ge 2$.

By considering particular cases, show that if the conjecture is correct then a = b = 1. [2]

(b) Use induction to prove that

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n-1}{n!} = 1 - \frac{1}{n!} \text{ for } n \ge 2.$$
[7]

8 A sequence u_n is defined by $u_{n+1} = 2u_n + 3$ and $u_1 = 1$.

Prove by induction that $u_n = 4 \times 2^{n-1} - 3$ for all positive integers *n*.

[5]

Prove by induction that
$$\sum_{r=1}^{n} \frac{r}{2^r} = 2 - \left(\frac{1}{2}\right)^n (2+n).$$

9

10 The smallest of three consecutive positive integers is *n*. Find the difference between the squares of the smallest and largest of these three integers, and hence prove that this difference is four times the middle one of these three integers. [4]

11

Matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & c \\ -c & 1 \end{pmatrix}$.

(a) Given that det M = 0, find the possible values of *c*.

[2]

(b) Prove by induction that $\mathbf{M}^n = 2^{n-1}\mathbf{M}$, for all positive integers *n*.

12

Prove by induction that, for all positive integers n, $\sum_{r=1}^{n} \frac{1}{3^r} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$.

14

[6]

It is conjectured that $\sum_{r=1}^{n} (r+1)2^r = (a+bn)2^n$, where *a* and *b* are constants.

(a) If the conjecture is true, verify that a = 0 and b = 2.

(b) Prove the conjecture.

[5]

- 16 De Moivre's theorem states that, for all positive integers *n*, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta + i \sin n\theta$.
 - (a) Prove this result by induction.

(b) By considering $\frac{1}{(\cos \theta + i \sin \theta)^n}$, extend the proof to negative integers.

17
Prove by induction that
$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix}$$
 for all positive integers *n*.

END OF QUESTION PAPER

Question	Answer/Indicative content	Marks	Part marks and guidance		
1	When $n = 1$, $(-1)^0 \frac{1 \times 2}{2} = 1$	B1			
	and $1^2 = 1$, so true for $n = 1$ Assume true for $n = k$	B1			
	$\Rightarrow 1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{k-1} k^{2} = (-1)^{k-1} \frac{k(k+1)}{2}$	E1	Assuming true result for some <i>n</i> .	Condone series shown incomplete	
	$\Rightarrow 1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{k-1}$ ${}^{1} k^{2} + (-1)^{k+1-1} (k+1)^{2}$	M1*	Adding $(k + 1)$ th term to both sides.		
	$= (-1)^{k-1} \frac{k(k+1)}{2} + (-1)^{k+1-1} (k+1)^{2}$				
	$=(-1)^{k}\left[\frac{-k(k+1)}{2}+(k+1)^{2}\right]$	M1 Dep*	Attempt to factorise (at least one valid factor)		
	$=(-1)^{k}(k+1)\left(\frac{-k}{2}+k+1\right)$	A1	Correct factorisation Accept $(-1)^{k\pm m}$ provided expression correct.		
	$= \left(-1\right)^{k} \left(k+1\right) \left(\frac{k+2}{2}\right)$	A1	Valid simplification with (–1) ^k		
	$=(-1)^{[n-1]}\frac{n(n+1)}{2}, n=k+1$	E1	Or target seen		
	Therefore if true for $n = k$ it is also true for $n = k + 1$		Dependent on A1 and previous E1		
	Since it is true for $n = 1$, it is true for all positive integers, n.	E1	Dependent on B1 and previous E1		
			Examiner's Comments		
			Most candidates knew what to do and were meticulous in presenting their argument. The factor $(-1)^{k}$ was successfully dealt with by many although it caused a problem for some. The precise wording needed to round off the argument was in the main well expressed.		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
			Total	8	

Question		Answer/Indicative content	Marks	Part marks and guidance	
2	i	$\sum_{r=1}^{n} \left[r \left(r-1 \right) - 1 \right] = \sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - n$	M1	Split into separate sums	
	i	$=\frac{1}{6}n(n+1)(2n+1)-\frac{1}{2}n(n+1)-n$	M1	Use of at least one standard result (ignore 3 rd term)	
	i		A1	Correct	
	i	$=\frac{1}{6}n[(n+1)(2n+1)-3(n+1)-6]$	M1	Attempt to factorise. If more than two errors, M0	
	i	$= \frac{1}{6}n[2n^{2} - 8]$ $= \frac{1}{3}n[n^{2} - 4]$			
	i	$=\frac{1}{3}n[n^2-4]$	A1	Correct with factor $\frac{1}{3}n$ oe	
	i	$=\frac{1}{3}n(n+2)(n-2)$		Answer given Examiner's Comments	
				This was usually answered well. The most common	
				error was to write $\sum_{r=1}^{n} 1 = 1$ and	
				this led to difficulty with earning the next mark, especially when compounded by trying to work back from the given result. This question was also subject to some careless notation; too few sigmas and missing brackets.	
	ii	When $n = 1$,			
		$\sum_{r=1}^{n} \left[r \left(r-1 \right) -1 \right] = (1 \times 0) - 1 = -1$ and $\frac{1}{3} n \left(n+2 \right) \left(n-2 \right) = \frac{1}{3} \times 1 \times 3 \times -1 = -1$			
	ii	So true for <i>n</i> = 1	B1		

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
ii	Assume true for $n = k$ $\sum_{r=1}^{k} [r(r-1)-1] = \frac{1}{3}k(k+2)(k-2)$	E1	Or "if true for n = k, then…"	
ii	$ \Rightarrow \sum_{r=1}^{k+1} [r(r-1)-1] = \frac{1}{3}k(k+2)(k-2) + (k+1)k-1 = \frac{1}{3}k^3 + k^2 - \frac{4}{3}k + k - 1 = \frac{1}{3}(k^3 + 3k^2 - k - 3) $	M1*	Add (k + 1)th term to both sides	
			Attempt to factorise a cubic with 4 terms	
ii	$= \frac{1}{3}(k+1)(k^{2}+2k-3)$ $= \frac{1}{3}(k+1)(k+3)(k-1)$ $= \frac{1}{3}(k+1)((k+1)+2)((k+1)-2)$	A1		
ii	$=\frac{1}{3}(k+1)((k+1)+2)((k+1)-2)$		Or $=\frac{1}{3}n(n+2)(n-2)$ where $n = k + 1$;	
			or target seen	
ii	But this is the given result with $n = k + 1$ replacing $n = k$. Therefore if the result is true for $n = k$, it is also true for $n = k + 1$.	E1	Depends on A1 and first E1	

Question	Answer/Indicative content	Marks	Part marks and guidance
Question	Answer/Indicative content Since it is true for n = 1, it is true for all positive integers, n.	Marks E1	Part marks and guidanceDepends on B1 and second E1Examiner's CommentsMost candidates knew how to earn the first three marks, but again the written work was frequently scruffy with missing sigmas in particular. It is nonsense to write the sum of a series as equal to its last term. In some scripts, the added term in the series was the k th, not the (k+1) th. The following algebra proved too much for quite a few candidates, again not helped by missing brackets. It was just about possible to believe that the correct four term cubic could be instantly factorised, and some benefit of the doubt was given here.Inevitably, marks were lost in the details of the induction argument. Initially, "assume $n = k$ " does not state what is being assumed. "True for $n = 1$ and $n=k$ " is not so, when the latter is conditional. The language must be precise, and many candidates displayed only half remembered sentences, indicating that they did not
			fully understand the induction argument.
	Total	12	

Question	Answer/Indicative content	Marks	Part marks and guidance	
3	When $n = 1$, $\frac{1}{1 \times 3} = \frac{1}{3}$	B1	Condone eg " $\frac{1}{3} = \frac{1}{3}$ "	
	and $\frac{n}{n=1} = \frac{1}{3}$, so true for			
	Assume true for <i>n</i> = <i>k</i>	E1	Assuming true for <i>k</i> , (some work to follow) If in doubt look for unambiguous "ifthen" at next E1 Statement of assumed result not essential but further work should be seen	
	Sum of <i>k</i> + 1 terms		NB "last term = sum of terms" seen anywhere earns final E0	
	$=\frac{k}{2k+1}+\frac{1}{(2k+1)(2k+3)}$	M1	Adding correct (<i>k</i> +1)th term to sum for <i>k</i> terms	
	$=\frac{k(2k+3)+1}{(2k+1)(2k+3)}$	M1	Combining their fractions	
	$=\frac{2k^2+3k+1}{(2k+1)(2k+3)}$			
	$=\frac{(k+1)(2k+1)}{(2k+1)(2k+3)}=\frac{k+1}{2k+3}$	A1	Complete accurate work	
	which is $\frac{n}{2n+1}$ with $n = k + 1$		May be shown earlier	
	Therefore if true for $n = k$ it is also true for $n = k + 1$	E1	Dependent on A1 and previous E1.	

Question	Answer/Indicative content	Marks	Part marks and guidance
	Since it is true for <i>n</i> = 1, it is true for all positive integers, <i>n</i>	E1	Dependent on B1 and previous E1 E0 if "last term" = "sum of terms" seen above Examiner's Comments It was good to see many extremely well argued proofs. Very many candidates showed that they appreciated the need for clarity and logical statements, but the three explanation marks were not always earned. Proof by induction has a standard format: prove for $n = 1$; assume the conjecture is true for $n = k$ and hence show it is true for $n = k + 1$; state "if it is truefor $n = k + 1$; since it is true for $n = 1$ " etc. The mark schemes of past years set out the argument clearly but there are still those who believe that " $n = k'$ " is sufficient to tell the reader that a result is being assumed to be true, and that "true for" $n = 1, n = k$ and $n = k + 1$ is adequate to replace "ifthensince". This particular series should not have been difficult to deal with algebraically. Candidates could help themselves by choosing the simplest denominator when combining fractions. When this was not done and a cubic obtained by expanding the numerator, it was not always convincingly re-factorised. Somecandidates made the

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
					mistake of adding	
					$\frac{1}{\frac{2k}{2k} 2k} \frac{2}{2}$ as the $k + 1$ th term.	
					Some lost a mark because, in their work, the last term of the series was equated to the sum of the terms. Is this laziness, or a lack of understandingof the notation?	
	<u>J</u>		Total	7		

Question	Answer/Indicative content	Marks	Part marks and guidan	ce and the second se
4	$u_1 = 3$ and $\frac{3^{1-1} + 5}{2} = 3$, so true for $n = 1$	B1	Must show working on given result with <i>n</i> = 1	
	Assume true for $n = k$ $\Rightarrow u_k = \frac{3^{k-1} + 5}{2}$	E1	Assuming true for k Allow "Let $n = k$ and (result)" "If $n = k$ and (result)" Do not allow " $n = k$ " or "Let n = k", without the result quoted, followed by working	
	$\Rightarrow u_{k+1} = 3\left(\frac{3^{k-1}+5}{2}\right) - 5$ $= \frac{3^k + 15}{2} - 5$ $= \frac{3^k + 15 - 10}{2}$	M1	<i>u</i> _{k + 1} with substitution of result for uz and some working to follow	
	$=\frac{3^k+5}{2}$	A1	Correctly obtained	
	$=\frac{3^{n-1}+5}{2}$ when $n = k+1$		Or target seen	
	Therefore if true for $n = k$ it is also true for $n = k + 1$.		Both points explicit	
		E1	Dependent on A1 and previous E1	

Question	Answer/Indicative content	Marks	Part marks and guidance
			 k", (not the same thing as "assume n = k is true"). Apart from some candidates who believed that they were dealing with a series, the central passage of algebra was successfully done. However the number of students who lost the final two explanation marks is extremely disappointing since this point is raised every year. The wording that is unarguably acceptable has been set out in the mark schemes for many years. If it is true when n=k it is also true when n=k+1. Since it is true for n=1, it is true for all positive integers n.".
	Total	6	

Question	Answer/Indicative content	Marks	Part marks and guida	nce
5	When $n = 1$, $u_n = 4(3)^1 - 1 - 3 = 8$, (so true for $n = 1$)	B1	Showing use of $u_n = 4(3)^n - n - 3$	
	Assume $u_k = 4(3)^k - k - 3$	E1	Assuming true for $n = k$ Allow "let $n = k$ and (result)" or "If $n = k$ and (result)" Do not allow " $n = k$ " or "let n = k " without the result quoted	
	$\Rightarrow u_{k+1} = 3u_k + 2k + 5 = 3(4(3)^k - k - 3) + 2k + 5$	M1	u_{k+1} using u_k and attempting to simplify	
	$= 4(3)^{k+1} - (k+1) - 3$	A1	Correct simplification or identification with a 'target' expression using $n = k + 1$	
			The "target" shows this	
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$ then it is also true for $n = k + 1$.	E1	Dependent on A1 and previous E1	
	Since it is true for $n = 1$, it is true for all positive integers.	E1	Dependent on B1 and previous E1	
			Examiner's Comments	
			An encouraging number of complete logical arguments were seen, but many candidates lost the final two marks for inadequate explanation. It is incorrect to claim the result is "true for $n = k + 1$ " before both pointing out the structure and conditioning on the assumption. Using abbreviations such as " $n = k + 1$ is true" is also nonsensical and insufficient.	
	Total	6		

Question	Answer/Indicative content	Marks	Part marks and guidance
6 a	$\mathbf{M}^{i} = \begin{pmatrix} 1-4k & 8k \\ -2k & 1+4k \end{pmatrix}$ $\mathbf{M}^{k} = \begin{pmatrix} 1-4k & 8k \\ -2k & 1+4k \end{pmatrix}$ $\mathbf{M}^{k+1} = \mathbf{M}^{k} \times \mathbf{M} = \begin{pmatrix} 1-4k & 8k \\ -2k & 1+4k \end{pmatrix} \begin{pmatrix} -3 & 8 \\ -2 & 1+4k \end{pmatrix} \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix}$ $= \begin{pmatrix} -3-4k & 8+8k \\ -2-2k & 5+4k \end{pmatrix}$ $= \begin{pmatrix} 1-4(k+1) & 8(k+1) \\ -2(k+1) & 1+4(k+1) \end{pmatrix}$ which is the formula with <i>n</i> $= k + 1.$ Therefore if true for <i>n</i> , true for <i>n</i> + 1. True for 1 \Rightarrow true for 2, 3, and all positive integers	1) E1(AO2. 1) M1(AO1. 1)	$M^{t+1} = M \times M^{t} = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 1-4k & 8k \\ -2k & 1+4k \end{pmatrix}$ $\mathbf{DFt} \text{ required to check both ways round.}$ Convincingly y expressed in terms of k + 1 Completion of proof by induction. Dependent on B1 and previous E1
b	$ \begin{array}{l} \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \\ \Rightarrow & -3x + 8y = x, & -2x + 5y = y \\ \Rightarrow & y = \frac{1}{2}x \end{array} $	M1(AO1. 1a) M1(AO1. 1) A1(AO2. 2a) [3]	Using Mx = x Obtaining an equation Any correct form; must state both equations lead to this answer.

Qu	estio	n	Answer/Indicative content	Marks	Part marks and guidance
		С	M^n represents the transformation repeated <i>n</i> times. Each repeat leaves points on $y = \frac{1}{2}x$ unchanged.	E1(AO2. 4) E1(AO2. 1) [2]	
		d	$ \begin{pmatrix} 1-4n & 8n \\ -2n & 1+4n \end{pmatrix} \begin{pmatrix} x \\ \frac{1}{2}x \end{pmatrix} $ $ = \begin{pmatrix} x-4nx+8n(\frac{1}{2}x) \\ -2nx+\frac{1}{2}x+4n(\frac{1}{2}x) \end{pmatrix} $ $ = \begin{pmatrix} x \\ \frac{1}{2}x \end{pmatrix} $ so same interval line for all <i>n</i> .	M1(AO1. 1) A1(AO1. 1) E1(AO2. 3) [3]	Multiplicatio n with some progress cao
			Total	14	

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance
7		а	E.g. $n = 2$ gives $\frac{1}{2} = a - \frac{b}{2}$ and $n = 3$ gives $\frac{5}{6} = a - \frac{b}{6}$ Verify (or solve) $a = b = 1$	M1(AO3. 1a) A1(AO2. 2a) [2]	Two values of $n \ge 2$ to give two si multaneous equations
		b	Result holds for $n = 2\left(\frac{1}{2} = \frac{1}{2}\right)$ Assume $\frac{\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k-1}{k!} = 1 - \frac{1}{k!}}{\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k-1}{k!} + \frac{k}{(k+1)!}}{\frac{1-\frac{1}{k!} + \frac{k}{(k+1)!}}{(k+1)!}}$ $= 1 - \frac{1}{k!} + \frac{k}{(k+1)!}$ $1 - \frac{1}{k!} + \frac{k}{(k+1)!} = 1 - \left(\frac{(k+1)-k}{(k+1)!}\right)$ RHS is which is $1 - \left(\frac{1}{(k+1)!}\right)$ The result is true for $n = 2$. If true for $n = k$ it is also true for $k + 1$ hence true for $n = 2$, 3, 4,	B1(AO1. 1) E1(AO2. 1)	Assume true for <i>n</i> = <i>k</i> Add correct next term to both sides 1 minus fraction with correct denominato r on RHS Showing that this is the given result with <i>k</i> + 1 replacing <i>k</i> Complete argument
			Total	9	

Question	Answer/Indicative content	Marks	Part marks and guidance
8	When $n = 1$, $u_1 = 4 \times 2^0 - 3$ = 1, as required Assume true for $n = k$, so u_K = $4 \times 2^{k-1} - 3$ Then $u_{k+1} = 2(4 \times 2^{k-1} - 3) + 3 = 4 \times 2^k - 6 + 3$ = $4 \times 2^k - 6 + 3$ = $4 \times 2^k - 3$, which is the formula for $n = k + 1$ So if true for $n = k$, also true for $n = k + 1$; therefore true for all positive integers n	B1(AO 1.1) E1(AO 2.1) M1(AO 2.1) A1(AO 2.4) E1(AO 2.2a) [5]	Use of relation, with some simplificatio n Correct result reached and identified Dependent on the previous A1 and the initial B1 marks both being earned
	Total	5	

Question	Answer/Indicative content	Marks	Part marks and guidance		
9	When $n = 1$, LHS $= \frac{1}{2}$ and RHS $= 2 - \left(\frac{1}{2}\right)^{1}(2+1) = 2 - \frac{3}{2} = \frac{1}{2}$ so true for $n = 1$	B1			
	Assume true for $n = k$ that is $\sum_{r=1}^{k} \frac{r}{2^r} = 2 - \left(\frac{1}{2}\right)^k (2+k)$	E1	Assume true for <i>n</i> = <i>k</i>		
	$\sum_{r=1}^{k+1} \frac{r}{2^r} = 2 - \left(\frac{1}{2}\right)^k (2+k) + \frac{k+1}{2^{k+1}}$ $= 2 - \left(\frac{1}{2}\right)^k \left(2 + k - \left(\frac{k+1}{2}\right)\right)$ $= 2 - \left(\frac{1}{2}\right)^k \left(\frac{4+2k-k-1}{2}\right)$	M1* M1dep*	Add correct term to RHS followed by working Attempt to factorise with a factor of $\left(\frac{1}{2}\right)^{k}$ or $\left(\frac{1}{2}\right)^{k+1}$		
	$= 2 - \left(\frac{1}{2}\right)^{k+1} (2 + (k+1)) \text{ or } 2 - \left(\frac{1}{2}\right)^{k+1} (k+3)$ wih target seen	A1	cao with correct working		
	Therefore if it is true for $n = k$ then it is true for $n = k + 1$. It is true for $n = 1$ therefore it is true for n = 1,2,3, (and so is true for all positive integers).	E1 E1 [7]	Dependent on A1 and first E1 Dependent on B1 and second E1		
			Examiner's Comments A substantial minority demonstrated an inability to cope with indices. This meant that, for many, this question was not about demonstrating the concept of proof by induction, but about index manipulation. The algebra proved too difficult for most. In particular, a minus sign outside the bracket was		

Question	Answer/Indicative content	Marks	Part marks and guidance		
			easily the most common		
			error here.		
			Bad handwriting meant that		
			indices often got confused,		
			e.g. the index numbers		
			were written in line with		
			everything else and then		
			became coefficients instead		
			of indices. In the		
			denominator for example,		
			2^{k+1} often became $2^k + 1$ or		
			2(k + 1) or even $2k + 1$ in		
			later work.		
			Some multiplied out and		
			created very complicated		
			expressions, often carrying		
			through terms such as 1^{-2k}		
			for several lines seemingly		
			unaware that it could be		
			simplified. Rough working		
			was interspersed between		
			lines of their deductive		
			steps without making it		
			clear what they were doing.		
			We often saw a whole line		
			multiplied by 2^{k+1} and later		
			if we were lucky, divided by		
			2 ^{<i>k</i>+1} with no explanation		
			given. The most successful		
			were those who started by		
			creating two fractions with		
			clear denominators of 2^k		
			and 2^{k+1} , and developed		
			the work from there.		
			Many candidates write the		
			last statements down even		
			if they have not done		
			previous work. They need		
			to be aware that this wastes		
			their time because of the		
			way this question is		
			marked, where previous		
			steps need to be correct.		
			Apart from these points, it		
			was good to see that a		
			great many candidates had		
	1				

Questi	on	Answer/Indicative content	Marks	Part marks and guidance
				learned the appropriate introductions to the proof, and where they were successful in the algebraic argument, followed up with the crucial inductive argument, earning full marks. There were still a few candidates who insisted that their result showed that " $n = k + 1$ is true".
		Total	7	

Question	Answer/Indicative content	Marks		Part marks and guidance		
10	n n + 1 n + 2 soi $(n + 2)^2 - n^2$ soi	B1 M1	may be earned later allow ft for next three marks for other general consecutiv e integers eg $n-1$ n n + 1	allow $n^2 - (n + 2)^2$ for M1 then A0 for negative answer; may still earn last B1		
	4n + 4 obtained with at least one interim step shown $4(n + 1)$ or $\frac{4n + 4}{4} = n + 1$	A1 B1 [4]	for other integers in terms of n (eg 2n, 2n + 1, 2n + 2 or 2n + 1, 2n + 3, 2n + 5) allow ft for this M1 only may be	B0 for <i>n</i> + 1 × 4		
			obtained in dependentl y Examiner's Co The majority of that attempted proof question marks, showin interim step(s) corresponding marks. A mino wrong express three integers 3 <i>n</i>). Unfortuna candidates mis middle term of squaring the (<i>n</i> + 2) term wa often. Some ca	f candidates this standard gained full g the needed to obtain the accuracy rity chose sions for the (e.g. n , $2n$, tely ssing the 4n when as seen quite		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance
					considered the first term squared minus the last term squared and then conveniently ignored the negative signs. A handful of candidates attempted an entirely numerical approach.
			Total	4	

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		nd guidance
11		а	det M = c^2 + 1	B1 (AO 1.1a)			
			so <i>c</i> = i or –i	B1 (AO 1.1)			
				[2]			
		b	When $n = 1$, $\mathbf{M}^1 = 2^0 \mathbf{M} = \mathbf{M}$, as required	B1 (AO 2.1)	Check of initial case		
			Assume true for $n = k$, so $M^{k} = 2^{k-1}M$	M1 (AO 2.1)	Statement of induction hypothesis		
			If $c = i$, then $\mathbf{M}^{k+1} = 2^{k-1} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$	M1 (AO 2.1) A1* (AO	Or using <i>c</i> = –i	May use matrix with c and $c^2 =$ -1 to cover	
			$=2^{k-1} \begin{pmatrix} 2 & 2i \\ -2i & 2 \end{pmatrix} = 2^k \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = 2^k \mathbf{M}$	2.2a)		both cases for M1A1B1	
			$\mathbf{M}^{k+1} = 2^{k-1} \begin{pmatrix} 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -i \end{pmatrix}$		Or using <i>c</i> = i		
			If $c = -i$, then $M^{k+1} = 2^{k-1} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$ = $2^{k-1} \begin{pmatrix} 2 & -2i \\ 2i & 2 \end{pmatrix} = 2^k \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} = 2^k \mathbf{M}$	B1 (AO 2.1)			
			so if true for <i>n</i> = <i>k</i> then also true for	B1dep* (AO 2.2a)			
			<i>n</i> = <i>k</i> + 1	B1dep* (AO 2.5)			
			therefore true for all positive integers <i>n</i>	[7]			
			Total	9			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
12			When <i>n</i> = 1,	B1 (AO2.1)			
			$1^{3} = \frac{1}{4} \times 1^{2} \times (1+1)^{2}$ so true for <i>n</i> = 1	M1 (AO2.1)			
			Assume true for <i>n</i> = <i>k</i> :	M1 (AO2.1)			
			$\sum_{r=1}^{k} r^{3} = \frac{1}{4}k^{2}(k+1)^{2}$	A1 (AO2.2a)			
			Then $\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$ = $\frac{1}{4}(k+1)^2(k^2+4k+4)$	E1 (AO2.4) [5]	Dependent on all previous marks earned		
			$=\frac{1}{4}(k+1)^2(k+2)^2$ which is the formula for $n = k + 1$				
			So if true for $n = k$, true also for $n = k + 1$ therefore true for all $n \ge 1$				
			Total	5			

Question	Answer/Indicative content	Marks		Part marks a	nd guidance
13	When $n = 1, 5^{1} + 2 \times 11^{1} =$ 27 div by 3 Assume $u_{k} = 5^{k} + 2 \times 11^{k}$ is div by 3 $u_{k+1} = 5^{k+1} + 2 \times 11^{k+1} = 5(u_{k} - 2 \times 11^{k}) + 22 \times 11^{k} = 5(u_{k} - 2 \times 11^{k}) + 22 \times 11^{k}$ or $u_{k+1} = 5^{k+1} + 11(u_{k} - 5^{k}) = 11u_{k} - 6 \times 5^{k}$ or $u_{k+1} + u_{k} = 5^{k+1} + 2 \times 11^{k+1} + 5^{k} + 2 \times 11^{k} = 6 \times 5^{k} + 24 \times 11^{k}$ $= 6 \times 5^{k} + 24 \times 11^{k}$ As u_{k} div by 3, u_{k+1} div by 3 So if true for $n = k$, true for n = k+1. As true for $n = 1$, true for all positive integers n	B1*(AOs 2.1) M1(AOs2 .1) M1 A1(AOs1. 1b) M1 A1 M1(AOs1 .1b) A1 A1*(AOs 2.2a) A1dep(A Os2.4) [7]	or 5^{k} + $2 \times 11^{k} = 3m$ substituting for 5^{k} or $15m$ + 12×11^{k} substituting for 11^{k} or $33m$ - 6×5^{k} adding u_{k} to u_{k+1} dep* marks Examiner's Co The inductive divisibility proof quite tricky an some interestif for negotiating The structure inductive proof generally well and most can overcame the gained full material expect a caref statement of the principle at the achieve the fir along the lines true for $n = 1$, n = k then true it is therefore the AfL	step for ofs can be d we found ing variations g this. of an of an of was understood, didates who inductive step wrks. We ful summary he inductive e end to nal 'A' mark, s of 'as it is and if true for e for $n = k+1$,	

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
					It is worth emphasising the technique of substituting for or extracting multiples of $3m - 5 \times 11^k$ for 5^k (or its equivalent) in induction proofs of divisibility like this.		
			Total	7			

Question	Answer/Indicative content	Marks	Part marks and guidance
	When $n = 1, \frac{1}{3} = \frac{1}{2}(1 - \frac{1}{3})$ so true for $n = 1$ Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{3^{r}} = \frac{1}{2}(1 - \frac{1}{3^{k}})$ s $\sum_{r=1}^{k+1} \frac{1}{3^{r}} = \frac{1}{2}(1 - \frac{1}{3^{k}}) + \frac{1}{3^{k+1}}$ o $= \frac{1}{2}(1 - \frac{3}{3^{k+1}} + \frac{2}{3^{k+1}})$ $= \frac{1}{2}(1 - \frac{1}{3^{k+1}})$ [so true for $n = k$ + 1] True for $n = k \Rightarrow$ true for $n = k$ $+ 1 \Rightarrow$ true for all n	B1(AO 2.1) M1(AO 2.1) M1(AO 2.1) A1(AO 1.1) A1*(AO 2.2a) E1dep (AO 2.4) [6]	condone notation errors addi $\frac{1}{3^{k+1}}$ to ng $\frac{1}{2}\left(1-\frac{1}{3^k}\right)$ combining fractions dep A1* Examiner's Comments The method of mathematical induction was well rehearsed by the majority of candidates. However, the inductive step proved to be tricky for many, who were unable to successfully combine the fracti $\frac{1}{3^k}$ an $\frac{1}{3^{k+1}}$. This ons d proved rather costly, as this step was required to achieve the concluding A1 mark. \bigcirc AfL The use of precise language to support the algebraic manipulation is a key part of any proof by induction. It is also important that candidates

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance
					understand that the truth for n = k is an assumption, not a given.
					Exemplar 3
					$\sum_{i=1}^{n} \frac{3}{3^{n}} = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right]$ $per p = 1 \qquad LHS = \frac{1}{3} (1) = \frac{1}{3} \left(\sum_{i=1}^{n} \frac{1}{i + \frac{1}{3}} \right)$ $RHS = \frac{1}{2} \left[1 - \frac{1}{3} \right] = \frac{1}{2} \left[1 - \frac{1}{3} \right] = \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3} \right]$ $So \qquad LHS = RHS = \frac{1}{3} \qquad So \qquad bwe por root$ $Assume brue for n = k = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] + \frac{1}{3} (ka) \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] + \frac{1}{3} (ka) \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{4} \left[\frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{4} \left[\frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{4} \left[\frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{4} \left[\frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] \frac{1}{4} \left[\frac{1}{2} \left[1 - \frac{1}{3^{n}} \right] = \frac{1}{2} \left[1 - \frac{1}{3^{n}} \right]$
					This candidate has assumed the truth of the statement for $n = k + 1$, instead of attempting to prove its truth assuming the truth for $n = k$. The inductive step is missing, and the final statement is incorrect.
			Total	6	

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
15		а	$n = 1: 4 = 2a + 2b \Rightarrow a + b =$ 2 $n = 2: 16 = 4a + 8b \Rightarrow a +$ 2b = 4 so $a = 0$ and $b = 2$	B1 (AO 2.1) B1 (AO 1.1) B1 (AO 1.1) [3]	Substituting any value of <i>n</i> Substituting any second value of <i>n</i> AG Working must be clear
		b	When $n = 1$, result is true from part (a) Assume true for $n = k$, so $\sum_{r=1}^{k} (r+1)2^r = k \times 2^{k+1}$ $\sum_{r=1}^{k+1} (r+1)2^r = k \times 2^{k+1}$ $\ddagger h(2k+2) \times 2^{k+1} = (k+1) \times 2^{(k+1)+1}, \text{ so true for } n = k+1$ 1 So if true for $n = k$, true for $n = k + 1$; and as true for $n = 1$, true for all positive n	B1 (AO 2.1) M1 (AO 2.1) M1 (AO 2.1) E1 (AO 2.4) E1 (AO 2.2a) [5]	Or direct check if n = 1 not used in (a) Image: Constant of the second
			Total	8	

Qı	lestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
16		а	$(\cos \theta + i\sin \theta)^1 = \cos \theta + i\sin \theta$, so true for $n = 1$	B1 (AO 2.1)	verifying for <i>n</i> = 1		
			assume true for $n = k$: (cos θ + isin θ) ^k = cos $k\theta$ + isin $k\theta$	B1 (AO 2.1)			
			$(\cos \theta + i\sin \theta)^{k+1} = (\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$	M1 (AO 2.1)	using result for <i>n</i> = <i>k</i>		
			= $\cos k\theta \cos \theta - \sin k\theta \sin \theta$ θ + i($\sin k\theta$ + $\cos k\theta \sin \theta$)	A1 (AO 2.2a)	$101 \ H = K$		
			$= \cos(k + 1)\theta + i\sin(k + 1)\theta$				
			so if true for $n = k$ then true for $n = k + 1$				
			but true for <i>n</i> = 1 so true for all positive integers <i>n</i>	E1 (AO 2.4)	must end		
				[5]	with both statements		
		b	$\frac{1}{\left(\cos\theta + i\sin\theta\right)^n} = \frac{1}{\cos n\theta + i\sin n\theta}$	B1 (AO 3.1a)	realising the		
			$=\frac{\cos n\theta - i\sin n\theta}{(\cos n\theta + i\sin n\theta)(\cos n\theta - i\sin n\theta)} = \frac{\cos n\theta - i\sin n\theta}{\cos^2 n\theta + \sin^2 n\theta}$	M1 (AO 1.1)	denominato r		
			= $\cos n\theta$ – isin $n\theta$ = $\cos(-n\theta)$ + isin(– $n\theta$)	A1 (AO 2.1)			
			so (cos θ + isin θ) ^{-<i>n</i>} = cos(- <i>n</i> θ) + isin(- <i>n</i> θ), and result is proved for negative	E1 (AO 2.2a)	complete		
			integers	[4]	correct argument		
			Total	9			

Que	estion	Answer/Indicative content	Marks		Part marks a	nd guidance
17		When $n \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}^1 = \begin{pmatrix} 1 & 2^1 - 1 \\ 0 & 2^1 \end{pmatrix}$	B1 (AO2.1)			
		= 1,	M1 (AO2.2a)			
		[Assu $n = k: \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}^k = \begin{pmatrix} 1 & 2^k - 1 \\ 0 & 2^k \end{pmatrix}$	M1 (AO1.1)	$ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2^{k} - 1 \\ 0 & 2^{k} \end{pmatrix} $ $ \mathbf{Or} \begin{pmatrix} 1 & 2^{k} - 1 + 2^{k} \\ 0 & 2^{k+1} \end{pmatrix} $		
		me] (1, 1) ^{k+1} (1, 2 ^k , 1) (1, 1)	A1* (AO1.1)	ffust clearly 'assume' <i>n</i>		
		The $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & 2^k - 1 \\ 0 & 2^k \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$	M1dep* (AO2.2a) A1dep*	= k must have established	'true for <i>n</i> =	
		n = $\begin{pmatrix} 1 & 1+2^{k+1}-2\\ 0 & 2^{k+1} \end{pmatrix} = \begin{pmatrix} 1 & 2^{k+1}-1\\ 0 & 2^{k+1} \end{pmatrix}$	(AO2.4)	truth for <i>n</i> = 1 for final mark	k and $k + 1'is M0but need$	
		$= \begin{pmatrix} 0 & 2^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 2^{k+1} \end{pmatrix}$ so if true for $n = k$ then true	[6]	Indik	not re-state it at the end	
		for $n = k + 1$ [as true for $n = 1$] therefore true for all n .	[0]	Examiner's Co		
				question was straightforwar	a relatively	
				candidates sh working to jus Errors and or	ow some tify this step.	
				proved quite of final two mark dependent on	costly, as the s were	
				errors, though two types: one M to Mk (when	rare, were of e was to add	
				given matrix); involved mani handling indic	another pulating	
				-	stead of $2^k - 1$,	
				full marks for t it was importa	nt that	
				candidates us language that		

Question	n Answer/Indicative content Marks	Marks	Part marks ar	nd guidance
			Clear mathematical justification of the induction process. For example, in their concluding statement, if they wrote 'so, as it is true for $n = 1$, $n = k$ and $n = k +$ 1, it is true for all n' , they missed out on the final two marks; whereas if they wrote 'so, as it is true for $n = k$, then true for $n = k + 1$, it is true for all n' , they got full marks (assuming the induction step was negotiated without errors). Although many candidates are well schooled in the logic of induction, the use of precise language to convey this logic is required, and it is important that candidates understand that the truth for n = k is an assumption, not a given. Exemplar 2 $\frac{For n = 1 + \frac{1}{(0 - 2)^{n}} + \frac{1}{(0 - 2)^{n}$	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
			Total	6	