SECTION B: MECHANICS ### Answer ALL questions. Write your answers in the spaces provided. [In this question \mathbf{i} and \mathbf{j} are horizontal unit vectors due east and due north respectively.] 1. A particle *P* of mass 0.5 kg is moving on a smooth horizontal plane. The origin *O* is on the plane. At time t = 0, P passes through O moving with velocity $(\mathbf{i} - \mathbf{j}) \,\mathrm{m \, s}^{-1}$ At time t seconds, the resultant horizontal force acting on P is $$[(3t-1)i+2j]N$$ (a) Find the velocity of P at t = 2 (5) (b) Find the distance of P from O at t = 2 (4) # Why this Isin I SUVAT 5 to use suvar we need acceleration (need 3 know to work out 4th unknown) a = F=ma 3t-1 = 0.5 2 $\left(\begin{array}{c} 3t^{-1} \\ 2 \end{array}\right) = \frac{1}{2} \underline{a} = 0 \qquad = \qquad \left(\begin{array}{c} 6t^{-2} \\ 4 \end{array}\right)$ $\frac{a}{-} = \left(6t - 2 \right)$ SUVAT is only for consentacceleration. Since acceleration changes constant in this Q Set () d :. Use integration different with N= oyt #### **Question 1 continued** $$= \left(3t^2 - 2t\right) + C$$ Find $$\subseteq$$ using lines from Q . When $f=0$, $y=\begin{pmatrix} 1\\ -1 \end{pmatrix}$ $$\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3(0)^2 - 2(0) \\ 4(0) \end{pmatrix} + \frac{c}{2}$$ $$\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{C}{C}$$ $$V = (3t^2 - 2t) + (1)$$ $$V = (3t^2 - 2t + 1)$$ $4t - 1$ $$\vee$$ | $t=2=\left(\frac{3(2)^2-2(2)+1}{4(2)-1}\right)$ #### **Question 1 continued** $$= \int \left(3t^2 - 2t + 1\right) dt$$ $$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2}$$ Since at origin $$(0) = (0^3 - 0^2 + 0) + d$$ $$\frac{1}{100} = \frac{0}{0}$$ $$\frac{1}{2} = \left(\frac{t^3 - t^2 + t}{2t^2 - t} \right)$$ $$\frac{5}{1+2} = \frac{(2)^{3} - (2)^{2} + 2}{2(2)^{2} - 2} = \frac{6}{6}$$:. distance = $$5^2 + 6^2 = 572 = 8.5 \text{ m}$$ (25) # 2. A ladder AB, of weight W and length 2a, has one end A resting on rough horizontal ground. The other end *B* rests against a vertical wall. A man of weight 6W stands on the ladder at a point C. The coefficient of friction between the ladder and the ground is $\frac{1}{3}$ The ladder rests in limiting equilibrium at an angle θ to the ground, where $$\tan \theta = \frac{12}{5}$$ The ladder is modelled as a uniform rod which lies in a vertical plane perpendicular to the wall. The man is modelled as a particle and the vertical wall is modelled as smooth. - (a) Find, in terms of W, the magnitude of the normal reaction exerted by the wall on the ladder at B. - (4) (b) Find the length AC. **(4)** (c) State the assumptions you have used to model the ladder as uniform and the ladder as a rod. (2) In a refinement of the model, the vertical wall is considered to be rough. The ladder is still in limiting equilibrium. (d) State, giving a reason, how this would affect your answer to part (a). **Question 2 continued** $$R(\rightarrow)$$: $\frac{1}{3}R_A = R_B$ (2) Sub 10 into 10: Distance AC which 1 610 1 COSE $$\frac{2x^{\frac{1}{2}}x^{\frac{1}{2}}}{5}$$ $\frac{56}{5}$ $a = a + 6x$ **Question 2 continued** $$\therefore x = 1.7a$$ moments casc in same very it beat. (d) If the wall was rough there would be a vertical force acting appears from point B. =) (Recolving vertically) RA would be reduced RA+ MRRe = W+ 1W to keep laster in equilibrium => (Resolving horszonfully) friction at A is also reduced. Smeller since Ra smeller from above. $$\frac{1}{3}R_A = R_B$$ =) Rg (s calso reduced. 3. One end of a light inextensible string is attached to a particle A of mass 2m. The other end of the string is attached to a particle B of mass 3m. The string passes over a small, smooth, light pulley P which is fixed at the top of a rough inclined plane. The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$ Particle A is held at rest on the plane with the string taut and B hanging freely below P, as shown in Figure 1. The section of the string AP is parallel to a line of greatest slope of the plane. The coefficient of friction between A and the plane is $\frac{1}{2}$ Particle A is released and begins to move up the plane. For the motion before A reaches the pulley, - (a) (i) write down an equation of motion for A, - (ii) write down an equation of motion for B, b) find in terms of α the acceleration of A **(4)** **(5)** **(4)** - (b) find, in terms of g, the acceleration of A, - (c) find the magnitude of the force exerted on the pulley by the string. (d) State how you have used the information that *P* is a smooth pulley. Question 3 continued $$30 - 9(4) - 29(\frac{2}{3}) = 5a$$ **Question 3 continued** $$= \int \frac{2304}{625} \, \text{m}^2 \, \text{g}^2 + \frac{9216}{625} \, \text{m}^2 \, \text{g}^2$$ d) Smooth Pulcy = Tension is the same on either side of the pulley. of the pulley would likely be taking more of the weight town the other side (... tensions not the same) (Total for Question 3 is 14 marks) [In this question i and j are horizontal unit vectors due east and due north respectively.] 4. At t = 0, a small ball B is projected from a fixed point O with velocity $(5\mathbf{i} + 8\mathbf{j})$ m s-1 The position vector of a point on the path of B is $(x\mathbf{i} + y\mathbf{j})$ m relative to O. The ball is modelled as a particle moving freely under gravity. The acceleration due to gravity is modelled as having magnitude 10 m s⁻² (a) Show that $$y = 1.6x - 0.2x^2 \tag{4}$$ Figure 2 The ball passes through a point A which is on the same horizontal level as O, as shown in Figure 2. (b) Using part (a), find the distance OA. **(2)** (c) Find the speed and the direction of motion of B as it passes through the point on the path where x = 6, giving your answers to 2 significant figures. **(6)** In reality, the acceleration due to gravity is less than 10 m s⁻² (d) State, giving a reason, how using a more accurate value for *g* would affect your answer to part (b). **(2)** (e) Suggest a possible improvement, apart from using a more accurate value for g, which could be made to the model. **(1)** **Question 4 continued** | (b) horizontal: | Vertical: | | |-----------------|-------------------|---------------------| | s= 6 | }
S=2.4 | (a) then use suver. | | u= 5 | h= 8 | (a) Then the source | | V= ? |) Y= ? | y= 1.62 -0.2x2 | | a = 0 | A=-10 | y=1.6(6)-0.2/6)2 | | t- | t= | h = 2.4 | $$V^{2} = L^{2} + 2es$$ $$V^{2} = S^{2} + 2(o)(b)$$ $$V^{2} = S^{2}$$ $$V^{2} = S^{2}$$ $$V^{2} = S^{2}$$ $$V^{2} = S^{2} + 2(-10)(2.4)$$ from diagram ball is moving downwards at B. $$\frac{y}{1} = \left(\frac{5}{-4}\right)$$. Dreithur is 390 below horizontal. | Question 4 continued | | | | | | | | |----------------------|------|----------|----------|---------------|----------------|-----------|------| | (d) | 4 | gravity | ls c | educed -1 | hen bul | ا سراا ﴿ | كداا | | | to . | ground S | lower | | | | | | • • | · 0A | will be | . forth | er | | | | | | × | found in | pert (| اارس (۵) | be larg | લ | | | د) | Take | e nite a | ccount a | it resistance | e (slav)
Jo | ig the la | _1(|