Question 1

Mark Notes

$$1(a)$$
 $e = 0.75$

B1

1(b)

Conservation of momentum

M1 allow 1 sign error

$$18\times4 + 7\times(-3) = 18v_A + 7v_B$$

A1 all correct

Restitution

M1 allow one sign error

$$v_B - v_A = -\frac{5}{7} (-3-4)$$

A1 all correct, any form

$$18v_A + 7v_B = 51$$

$$-7v_A + 7v_B = 35$$

$$v_A = 0.64$$

 $25v_A = 16$

$$v_B = 5.64$$

1(c)
$$I = 7[5.64-(-3)]$$

M1 oe, ft
$$v_A$$
, v_B

$$I = 60.48 \text{ Ns}$$

A1 ft
$$v_A$$
, v_B

Question 2

Perpendicular to line of centres, momentum of	B1
A unchanged, so A has no component of	
velocity, so A moves parallel to BA	
Taking L to R as positive	
NEL along line of centres:	M1
$V_A - V_B = e(v + v\cos 60^\circ)$	
$V_A - V_B = \frac{3v}{4}$	A1
PCLM $V_A + V_B = -v + v \cos 60^\circ = -\frac{v}{2}$	M1 A1
A B	AI
Solve: $V_A = \frac{1}{8}v$ $(V_B = -\frac{5}{8}v)$ so speed of A	A1
is $\frac{1}{8}v$ towards right	
	[6]

Use of NEL. Allow sign errors. Must be speed of separation speed of approach	NEL is Newton's experimental law
Use of PCLM. Allow sign errors	PCLM is Principle of conservation of linear momentum

Qu	estion 3 Solution	Mark	Notes
(a)	Use of Hooke's Law		
	$21 = \frac{\lambda x}{0.15}$	A1	
	$\lambda = 35$ (N)	A1	cao
		[3]	
(b)	Using expression for EE or KE	M1	
	Energy at start, EE = $\frac{\lambda x^2}{2(0.15)}$ $\left(\frac{35(0.09)^2}{2(0.15)} = 0.945\right)$	A1	FT λ and x from (a)
	Energy at end, KE = $\frac{1}{2}(0 \cdot 1)v^2$ (= $0 \cdot 05v^2$)	A1	
	Conservation of energy	M1	Used with EE and KE
	$0 \cdot 05v^2 = 0 \cdot 945$		
	$v = 4 \cdot 3$ (ms ⁻¹) (2 sig. figs)	A1	cao
		[5]	
	Total for Question 1	8	

)1	aestion 4	Mark	Notes
(Ľ,			
	$R \longleftarrow F$		
	At maximum speed $F=R$ (N2L with $a=0$) $F=\frac{P}{v}$	M1 M1	Used Used, si
	$2000 = \frac{80 \times 1000}{v}$		
	v = 40 (ms ⁻¹)	A1	cao
		[3]	
(b)	$R \stackrel{mg \sin \alpha}{=} mg$		
	$F = \frac{0.8 \times 80 \times 1000}{20} (= 3200)$	B1	si
	N2L	M1	All forces, dim. correct
	$F - R - mg \sin \alpha = ma$	A1	F and R opposing Allow one error
	$F - 2000 - 1200g \times \frac{1}{20} = 1200a$	A1	FT candidates F
	$a = 0.51 (\text{ms}^{-2})$	A1	cao
		[5]	
(c)	Any valid reason	E1	
	eg. Resistance could vary with speed.	[1]	
	Total for Question 4	9	

61	aestion	\mathbf{G}

Solution	Mark	Notes
momentum	M1	Allow 1 sign error
$u_A + mv_B$	A1	All correct

(a)	Conservation of momentum	M1	Allow 1 sign error
	$mu + 0 = mv_A + mv_B$	A1	All correct
	Restitution	M1	Allow one sign error
	$v_B - v_A = -e(-u)$	A1	All correct, any form
	$ \begin{aligned} v_A + v_B &= u \\ -v_A + v_B &= eu \end{aligned} $		
	$2v_A = (1 - e)u$	m1	One variable eliminated
	$v_A = \frac{1}{2}(1-e)u$	A1	cao, oe
	$v_B = \frac{1}{2}(1+e)u$	A1	cao, oe
	2	[7]	
(b)	Loss in KE = $\frac{1}{2}mu^2 - \frac{1}{2}m\left[\left(\frac{1}{4}u\right)^2 + \left(\frac{3}{4}u\right)^2\right]$	M1	
	$= \frac{1}{2}mu^2\left(1 - \frac{5}{8}\right) = \frac{3}{16}mu^2 (J)$	A1	cao
		[2]	

V <u>2</u>						
(c)	Velocity of <i>B</i> after 2^{nd} collision = $\frac{1}{2}(1 - e_1) \times \frac{3}{4}u$	M1	FT (a)			
	For no further collisions to occur,					
	Vel. of B after 2^{nd} collision \geq Vel. of A after 1^{st} collision					
	$\frac{1}{2}(1 - e_1) \times \frac{3}{4}u \ge \frac{1}{4}u$	M1	FT (a)			
	$3-3e_1 \ge 2$					
	$e_1 \leq \frac{1}{3}$	A1	Convincing			
		[3]				
	Alternative solution Vel. of <i>B</i> after 2^{nd} collision = $\frac{1}{2}(1 - e_1) \times \frac{3}{4}u$	(M1)	FT (a)			
	If $e_1 \le \frac{1}{3}$ then $1 - e_1 \ge \frac{2}{3}$					
	Vel. of B after 2 nd collis $\geq \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}u = \frac{1}{4}u = v_A$	(M1)	FT (a)			
	Vel. of B after 2^{nd} collision \geq Vel. of A after 1^{st} collision	(M1)	Convincing			
	Total for Question 7 12					

Question 6

3	(i)		$T\cos\beta = mg\sin\alpha$	M1	Resolving parallel to slope	α is angle of slope, $\beta = \hat{CAB}$ $\alpha = 16.26^{\circ}$, $\beta = 53.13 - \alpha = 36.87^{\circ}$
			0.8T = (9)(9.8)(0.28)	A1	Accept cos 36.9° etc	
		OR	$T\sin\gamma + R\cos\alpha = mg$ $T\cos\alpha = R\sin\alpha$		M1 Resolving vertically <i>and</i> horizontally	γ is between string and horizontal $\gamma = 53.13^{\circ}$ (R is normal reaction)
			$T\cos \gamma = R\sin \alpha$ $0.8T + 0.96R = 9 \times 9.8$ $0.6T = 0.28R$		A1 Both equations correct	y = 33.13 (R is normal reaction)
			T = 30.87	A1	Accept anything rounding to 31	Dep on M1A1 (May be implied)
			$T = \frac{\lambda(4.0 - 2.2)}{2.2}$	B1	Correct equation linking T and λ	
			Modulus of elasticity is 37.73 N	E1 Working must lead to 37.73 to 4 sf		
				[5]		
3	(ii)	(A)	Resultant force is 18 N (up the slope)	M1	Or $18 + T\cos\beta - mg\sin\alpha$	
			Acceleration is 2 ms ⁻² in direction AB	A1	Accept positive direction indicated clearly on diagram	Just '2' implies M1A0
				[2]		

C	uestic	on	Answer	Marks	Guida	ance
3	(ii)	(B)	At B, tension is $\frac{37.73 \times (2.5 - 2.2)}{2.2}$ (=5.145)	B1		
			$18 + T_{\rm B}\sin\alpha - mg\sin\alpha = ma$	M1	Equation of motion	At least two forces required for M1
			$18 + 5.145 \times 0.28 - 9 \times 9.8 \times 0.28 = 9a$	A1	FT for wrong tension	
			Acceleration is 0.584 ms ⁻² in direction BA (3 sf)	A1	CAO	
				[4]		
3	(iii)		WD by force is $18 \times 2.5 (=45)$	B1		
			EE at A is $\frac{37.73 \times 1.8^2}{2 \times 2.2}$ (= 27.783)	B1	For either of these	
			EE at B is $\frac{37.73 \times 0.3^2}{2 \times 2.2}$ (=0.77175)	Б	Tot cities of these	
			Change in PE is $9 \times 9.8 \times 0.7$ (= 61.74)	B1		
				M1	Equation involving KE and at least two of WD, EE, PE	
			$45 + 27.783 = 0.77175 + 61.74 + \frac{1}{2}(9)v^2$	A1	FT from any B0 above, but all 5 terms must be non-zero and all signs correct	
			Speed is $1.51 \mathrm{ms}^{-1}$ (3 sf)	A1	CAO	Dependent on previous 5 marks
				[6]		
				[*]		

Q	Question 7 Solution		Mark	Notes
	(a)	Conservation of momentum, $m\mathbf{u}_A + 0 = m \mathbf{v}_A + m \mathbf{v}_B$	M1	Used
		$m(-\mathbf{i} + 8\mathbf{j}) + 0 = m(2\mathbf{i} + \mathbf{j}) + m\mathbf{v}_B$	A1	
		$\mathbf{v}_B = (-3\mathbf{i} + 7\mathbf{j}) \qquad (\text{ms}^{-1})$	A1	Convincing
			[3]	
	(b)	Before After 7j vj -3i		
		Restitution parallel to j	M1	Used
		$v = -\frac{5}{7}(7) = -5$	A1	
		$\mathbf{v} = -3\mathbf{i} - 5\mathbf{j}$	A1	Velocity parallel to the
			[3]	cushion remains unchanged, i.e. $-3i$
	(c)	Impulse, $\mathbf{I} = \text{change in momentum}$ $\mathbf{I} = m(-3\mathbf{i} - 5\mathbf{j}) - m(-3\mathbf{i} + 7\mathbf{j})$	M1	Used
		$\mathbf{I} = -12m\mathbf{j}$ (Ns)	A1	
		$ \mathbf{I} = 12m$ Ns	A1	Units must be included, cao
			[3]	

(d)	(i) $\mathbf{r} = \mathbf{p} + \mathbf{v}t$ $\mathbf{r} = (x\mathbf{i} + 1 \cdot 75\mathbf{j}) + (-3\mathbf{i} - 5\mathbf{j})t$		
	Let $\mathbf{r}_{\text{pocket}} = 1 \cdot 75\mathbf{i}$ and compare \mathbf{j} coefficients to get $t = 0 \cdot 35$ (s)	M1 A1	Using $t = 0$ for instant of impact with table cushion and attempt at comparing both
	(ii) Comparing i coefficients $x = 2.8 \text{ (m)}$	M1 A1	coefficients must be made
		[4]	
	Alternative solution		
	(i) Parallel to y-axis, time = $\frac{\text{distance}}{\text{speed}} = \frac{1.75}{5}$	(M1)	
	= 0.35 (s)	(A1)	
	(ii) Parallel to the <i>x</i> -axis, dist. = speed × time = $3 \times 0 \cdot 35$	(M1)	
	$x = 1 \cdot 05 + 1.75$ x = 2.8 (m)	(A1)	
		([4])	