Mini Test 03 - Circles, Binomial expansion, Graphs and Transformations / Graphs

Question 1

A circle C has equation

$$
x^{2}+y^{2}+4 x-10 y-21=0
$$

- The point $P(5,4)$ lies on C.

Find the equation of the tangent to C at P, writing your answer in the form $y=m x+c$, where m and c are constants to be found.

$$
\begin{aligned}
& x^{2}+4 x+y^{2}-10 y-21=0 \\
& (x+2)^{2}-4+(y-5)^{2}-25-21=0 \\
& (x+2)^{2}+(y-5)^{2}=50
\end{aligned}
$$

$$
\text { centre }(-2,5) \text { radius } \sqrt{50}
$$

$$
\text { Mradius: } \frac{5-4}{-2-5}=\frac{1}{-7}
$$

$$
\begin{gathered}
m_{\text {tamest }}=7 \quad y=7 x+c(514) \\
4=7(5)+c \\
c=-31 \\
y=7 x-31
\end{gathered}
$$

Question 2
(a) Find the first four terms, in ascending powers of x, of the binomial expansion of

$$
\begin{equation*}
\left(2-\frac{1}{4} x\right)^{6} \quad(a+b)^{n} \tag{4}
\end{equation*}
$$

(b) Given that x is small, so terms in x^{4} and higher powers of x may be ignored, show

$$
\left(2-\frac{1}{4} x\right)^{6}+\left(2+\frac{1}{4} x\right)^{6}=a+b x^{2}
$$

where a and b are constants to be found.
(a)

$$
\begin{array}{l|l|l|l}
c_{0}^{6}=1 & C_{1}^{6}=6 & C_{2}^{6}=15 & C_{3}^{6}=20 \\
2^{6}=64 & 2^{5}=32 & 2^{4}=16 & 2^{3}=8 \\
\left(\frac{-1}{4} x\right)^{0}=1 & \left(\frac{-1}{4} x\right)^{1}=\frac{-1}{4} x & \left(\frac{-1}{4} x\right)^{2}=\frac{1}{16} x^{2} & \left(\frac{-1}{4} x\right)^{3}=\frac{-1}{64} x^{3}
\end{array}
$$

$$
64+-48 x+15 x^{2}-\frac{5}{2} x^{3}
$$

(b)

$$
\begin{aligned}
\left(2+\frac{1}{4} x\right)^{6}= & 64+48 x+15 x^{2}+\frac{5}{2} x^{3} \\
\left(2-\frac{1}{4} x\right)^{6}+\left(2+\frac{1}{4} x\right)^{6} & =128+30 x^{2} \\
a & =128 \quad 6=30
\end{aligned}
$$

Question 3

$$
\begin{aligned}
& y=f(x)=x^{2} \cup \\
& f(-x)=(-x)^{2}=x^{2} u
\end{aligned} \begin{array}{r}
y=f(x)=(x-2)^{2} \\
y=f\left(\frac{1}{4} x\right) \\
=\left(\frac{1}{4} x-2\right)^{2} \\
\frac{1}{4} x-2=0 \\
\frac{1}{4} x=2 \\
x=8
\end{array}
$$

The curve C

- has a single turning point, a maximum at $(4,9)$
- crosses the coordinate axes at only two places, , $(-3,0)$ and $(0,6)$
- has a single asymptote with equation $y=4$
Φ reflection
(a) State the equation of the asymptote to the curve with equation $y=f(-x) . y=\psi$
(b) State the coordinates of the turning point on the curve with equation $y=f\left(\frac{1}{4} x\right) \cdot(16,9)$

Given that the line with equation $y=k$, where k is constant, intersects C at exactly one point,
(c) State the possible values for k. $K=\{$ OR $K \leqslant 4$

The curve C is transformed to a new curve that passes through the origin.
(d) (i) Given that the new curve has equation $y=f(x)-a$, state the value of the constant a.
(ii) Write down an equation for another single transformation of C that also passes through the origin.

$$
\begin{equation*}
f(x+3) \text { three to the right /s } \tag{2}
\end{equation*}
$$

