October Pre Half Term Review Mr Chan and Ms Fahmida's Math-magicians Pure and Mechanics

This exam has 10 questions, for a total of 85 marks.

Topic List

Pure

- Coordinate Geometry (Lines and Circles)
- Differentiation
- Integration
- Curve Fitting
- Linear Transformations
- Binomial Expansions

Mechanics

- Kinematics
- Forces (vertical pulleys)

Question:	1	2	3	4	5	6	7	8	9	10	Total
Marks	5	6	8	9	8	6	9	13	7	14	85
Score:											

- Advised to print in "A3-booklets", this will allow all questions to be on the left hand side.
- You can also print in A4, double-sided, and two staples on the left
- If instead you print in 2-in-1 settings, first print the second page up to the last page, then print the cover page separately (to allow all questions on the left)

Andrew Chan

3rd November 2023

1. Welcome Math-magicians, please see five nice 1 mark multiple choice questions to start:
(a) Three of the following points lie on the same straight line.

Which point does not lie on this line?
Tick one box.$(-2,14)$$(-1,8)$$(1,-3)$$(2,-10)$
(b) Zakiyyah says:
"A person's weight on Earth is directly proportional to their mass."
Andrew says:
"A person's weight on Earth is different to their weight on the moon."
Only one of the statements below is correct.
Identify the correct statement.
Tick one box.Zakiyyah and Andrew are both wrong.Zakiyyah is right but Andrew is wrong.Zakiyyah is wrong but Andrew is right.Zakiyyah and Andrew are both right.
(c) Which of the following equations has/have equal roots?
I. $x^{2}=x$
II. $x^{2}+2 x+1=0$
III. $(x+3)^{2}=1$
A. II only
B. III only
C. I and II only
D. I and III only
(d) If a and b are real numbers greater 1 , which of the following statements is/are true?
I. $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$
II. $\left(\frac{1}{a}+\frac{1}{b}\right)^{-1}=a+b$
III. $a^{2} b^{3}=(a b)^{6}$
A. I only
B. II only
C. III only
D. I and II only
E. None of them
(e)

The graph of $y=a x^{2}+b x+c$ is given as shown.
Which of the following is/are true?
I. $a<0$
II. $b<0$
III. $c<0$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III only
2. June 2018 - Paper 1 AQA (A) Maths AS-level Q15

A cyclist, Ms Fahmida, is travelling in a straight line on a horizontal road at a constant speed of $25 \mathrm{kmh}^{-1}$.

A second cyclist, Mr Chan, is riding closely and directly behind Ms Fahmida. He is also moving with a constant speed of $25 \mathrm{kmh}^{-1}$.
(a) Explain why the driving force applied by Mr Chan is likely to be less than the driving force applied by Ms Fahmida.

Mr Chan has a problem and stops, but Ms Fahmida continues at the same constant speed. Ms Fahmida sees an accident 40 m ahead, so she stops pedalling and applies the brakes. She experiences a total resistance force of 40 N .

Ms Fahmida and her cycle have a combined mass of 64 kg .
(b) Determine whether Ms Fahmida stops before reaching the accident.

Fully justify your answer.
(c) State one assumption you have made that could affect your answer to part (b).
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 continued
(Total for Question 2 is 6 marks)
3. June 2018 - Paper 1 OCR (MEI) Maths AS-level Q8

Figure 1

Figure 1 shows the graph of a quadratic function. The graph crosses the axes at the points $(-1,0),(0,-4)$ and $(2,0)$.

Find the area of the finite region bounded by the curve and the x-axis.
\qquad

Question 3 continued
(Total for Question 3 is 8 marks)
4. June 2018 - Paper 1 OCR (MEI) Maths AS-level Q9

The curve $y=(x-1)^{2}$ maps onto the curve C_{1} following a stretch of scale factor $\frac{1}{2}$ in the x-direction.
(a) Show that the equation of C_{1} can be written as $y=4 x^{2}-4 x+1$.

The curve C_{2} is a translation of $y=\frac{17}{4} x-x^{2}$ by $\binom{0}{-3}$.
(b) Show that the normal to the curve C_{1} at the point $(0,1)$ is a tangent to the curve C_{2}.
\qquad

Question 4 continued
(Total for Question 4 is 9 marks)
5. (a) Find the binomial expansion of

$$
(2+k x)^{4}
$$

It is given that

$$
(1-2 x)^{2}(2+k x)^{4} \equiv A+B x-104 x^{2}+\ldots
$$

where k, A and B are non zero constants.
(b) Determine the two possible values of B.
\qquad

Question 5 continued
(Total for Question 5 is 8 marks)
6. The lines $y=\frac{1}{2} x$ and $y=-\frac{1}{2} x$ are tangents to a circle at $(2,1)$ and $(-2,1)$ respectively.

Find the equation of the circle in the form $x^{2}+y^{2}+a x+b y+c=0$, where a, b and c are constants.
\qquad

Question 6 continued
(Total for Question 6 is 6 marks)
7. June 2020 - Paper 1 AQA Maths AS-level Q16

A simple lifting mechanism comprises a light inextensible wire which is passed over a smooth fixed pulley.

One end of the wire is attached to a rigid triangular container of mass 2 kg , which rests on horizontal ground.

A load of $m \mathrm{~kg}$ is placed in the container. The other end of the wire is attached to a particle of mass 5 kg , which hangs vertically downwards.

The mechanism is initially held at rest as shown in Figure 2 below.

Figure 2
The mechanism is released from rest, and the container begins to move upwards with acceleration $a \mathrm{~ms}^{-2}$.

The wire remains taut throughout the motion.
(a) Show that

$$
a=\left(\frac{3-m}{m+7}\right) g
$$

(b) State the range of possible values of m.

The load reaches a height of 2 metres above the ground 1 second after it is released.
In this part use $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
(c) Find the mass of the load.

Question 7 continued
(Total for Question 7 is 9 marks)
8. June 2020 - Paper 1 OCR (A) Maths AS-level Q7

Figure 3

Figure 3 shows a model for the roof of a building.
The roof is in the form of a solid triangular prism $A B C D E F$. The base $A C F D$ of the roof is a horizontal rectangle, and the cross-section $A B C$ of the roof is an isosceles triangle with $A B=B C$.

The lengths of $A C$ and $C F$ are $2 x \mathrm{~cm}$ and $y \mathrm{~cm}$ respectively, and the height of $B E$ above the base of the roof is $x \mathrm{~cm}$.

The total surface area of the five faces of the roof is $600 \mathrm{~cm}^{2}$ and the volume of the roof is $V \mathrm{~cm}^{3}$.
(a) Show that $V=k x\left(300-x^{2}\right)$, where $k=\sqrt{a}+b$, where a and b are integers to be determined.
(b) Use differentiation to determine the value of x for which the volume of the roof is a maximum.
(c) Find the maximum volume of the roof.

Give your answer in cm^{3}, correct to the nearest integer.
(d) Explain why, for this roof, x must be less than a certain value, which you should state.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 continued
(Total for Question 8 is 13 marks)
9. June 2019 - Paper 1 OCR (MEI) Maths AS-level Q10

In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
(a) Sketch the gradient function for the curve $y=24 x-3 x^{2}-x^{3}$.
(b) Determine the set of values of x for which the curve $y=24 x-3 x^{2}-x^{3}$ is decreasing.
\qquad

Question 9 continued
\qquad
(Total for Question 9 is 7 marks)
10. Q07 Edexcel International AS-Levels Mechanics WME01/01, Jan 2017

Figure 4

Two particles P and Q have masses 3 kg and m kg respectively ($m>3$).
The particles are connected by a light inextensible string which passes over a smooth light fixed pulley.

The system is held at rest with the string taut and the hanging parts of the string vertical.
The particle Q is at a height of 10.5 m above the horizontal ground, as shown in Figure 4.
The system is released from rest and Q moves downwards.
In the subsequent motion P does not reach the pulley.
After the system is released, the tension in the string is 33.6 N .
(a) Show that the magnitude of the acceleration of P is $1.4 \mathrm{~ms}^{-2}$.
(b) Find the value of m.

The system is released from rest at time $t=0$.
At time T_{1} seconds after release, Q strikes the ground and does not rebound.
The string goes slack and P continues to move upward.
(c) Find the value of T_{1}

At time T_{2} seconds after release, P comes to instantaneous rest.
(d) Find the value of T_{2}

At time T_{3} seconds after release $\left(T_{3}>T_{1}\right)$ the string becomes taut again.
(e) Sketch a velocity-time graph for the motion of P in the interval $0 \leq t \leq T_{3}$

Question 10 continued

Question 10 continued

Question 10 continued

Question 10 continued
\qquad
(Total for Question 10 is 14 marks)

Total for paper is 85 marks

Year 12 FM October Pre Half Term Review
 Mr Chan and Ms Fahmida's Math-magicians
 Pure and Mechanics
 Marking Schemes

November 3, 2023

Question 1

(a) $(1,-3)$
(b) "Zakiyyah and Andrew are both right."
(c) A. II only
(d) E. None of them
(e) C. I and III only

Question 2

MARK SCHEME - AS MATHEMATICS - 7356/1 - JUNE 2018

Q	Marking Instructions	AO	Marks	Typical Solution
15(a)	States that the resistance is less for the second rider so the force required for equilibrium is also less, or mention of slipstreaming OE	AO2.4	E1	Jason experiences less air resistance than Laura.
15(b)(i)	Models situation by using given mass and total resistance force to form equation of motion PI	AO3.3	M1	As $F=m a$ then $a=-0.625 \mathrm{~m} \mathrm{~s}^{-2}$$\begin{aligned} & u=25 \mathrm{~km} / \mathrm{h}=6.944 \mathrm{~m} \mathrm{~s}^{-1} \\ & v=0 ; \text { use } v^{2}=u^{2}+2 a s \text { so that } \\ & 0=6.944^{2}+2 \times(-0.625) \times s \end{aligned}$
	Uses appropriate suvat formula. May include $u=25$.	AO3.4	M1	
	States correct value for s (AWFW 38.5 to 38.6) Or maximum $u=7.07 \mathrm{~m} \mathrm{~s}^{-1}$ or $25.5 \mathrm{~km} / \mathrm{h}$ (AWRT) Or a needs to be <-0.603 (AWRT) Or Resistance needs to be $>38.5 \mathrm{~N}$ (AWFW 38.4 to 38.6) $\mathrm{Or} v^{2}$ is -1.8 (AWRT) when $s=40$	A01.1b	A1	$s=38.6 \mathrm{~m}$
	Makes appropriate comparison to conclude that Laura stops in time. Not necessary to see $38.6<40$, but comparison for other variables must be clear.	AO3.2a	E1	So Laura stops before reaching the accident
15(b)(ii)	States an assumption that, if incorrect, would contradict the conclusion in (i). (eg reaction time, diminishing resistive force as speed drops OE)	AO3.5a	E1F	Taking account of reaction time would mean she travelled a distance before starting to brake.
	Total		6	

Question 3

Question 4

Question	Answer	Marks	AOs		Guidance
	OR C_{2} is $y=4.25 x-x^{2}-3$	B1		Finding the equation of C_{2}. Any form	
	Normal to $y=4 x^{2}-4 x+1$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-4 \\ & \text { At }(0.1) \frac{\mathrm{d} y}{\mathrm{~d} x}=-4 \end{aligned}$	M1		Finding the derivative	
	Gradient of normal is $\frac{1}{4}$	M1		Finding negative reciprocal of their gradient	
	Equation of normal is $y=\frac{1}{4} x+1$	A1		FT their value for derivative	
	Point on C_{1} where gradient is $\frac{1}{4}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=4.25-2 x=\frac{1}{4}$	M1		Attempting to find the point on C_{1} where tangent parallel to the normal found.	
	$\begin{aligned} & \underset{y}{\operatorname{giving}} x=2 \\ & y=1.5 \end{aligned}$	A1		Both coordinates required	
	$y-\frac{3}{2}=\frac{1}{4}(x-2)$ Which is the same equation as the normal to C_{1}	E1		Correct equation for the tangent in form that makes it clear it is the same line as the normal.	
	OR show that point $(2,1.5)$ lies on normal So the normal to C_{1} is a tangent to C_{2}	$\begin{gathered} \text { (E1) } \\ {[7]} \end{gathered}$			

Question 4 - Special Case

Question	Answer	Marks	AOs		Guidance
	SPECIAL CASE when the candidate tries to show that the normal to C_{2} is a tangent to C_{1} C_{2} is $y=4.25 x-x^{2}-3$	B1		Finding the equation of C_{2}. Any form	
	Normal to $y=4.25 x-x^{2}-3$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=4.25-2 x \\ & \text { At }(0,1) \frac{\mathrm{d} y}{\mathrm{~d} x}=4.25 \end{aligned}$	M1		Finding the derivative	
	Gradient of normal is $-\frac{4}{17}$	A1		Finding negative reciprocal of their gradient	
	Equation of normal is $y=-\frac{4}{17} x+1$	A0			$(0,1)$ does not lie on C_{2}
	EITHER point of intersection with C_{1} $4 x^{2}-4 x+1=-\frac{4}{17} x+1$	M1		Attempt to solve simultaneous equations	
	OR Attempt to find both coordinates of the point on C_{1} with gradient $-\frac{4}{17}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-4=-\frac{4}{17}$	(M1)		Attempting to find the point on C_{1} where tangent parallel to the normal found. No further marks are available 4/7 maximum	

Question 5

PBCEED As puows

$$
\begin{aligned}
& (1-2 x)^{2}(2+k x)^{4} \equiv A+B x-104 x^{2}+\cdots \\
& \left(1-4 x+4 x^{2}\right)\left[\binom{4}{0} 2^{4}(k x)^{0}+\binom{4}{1}^{3}(k x)^{1}+\binom{4}{2} 2^{2}(x)^{2}+\cdots\right] \equiv A+B x-144 x^{2} \\
& \left(1-4 x+4 x^{2}\right)\left(16+32 k x+24 k^{2} x^{2}+\cdots\right) \equiv A+B x-104 x^{2}+\cdots
\end{aligned}
$$

MUUTRY ort up to x^{2}

$$
\Rightarrow(3 k-7)(k-3)=0
$$

$$
k=<\begin{aligned}
& 3 \\
& 7 / 3
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
16+32 k x+24 k^{2} x^{2}+\cdots \\
-64 x-128 k x^{2}+\cdots \\
64 x^{2}+\cdots
\end{array}\right\} \equiv A+B x-104 x^{2}+\cdots \\
& 16+(32 x-64) x+\left(24 x^{2}-2 x+64\right) x^{2} \equiv A+B x-104 x^{2}+\cdots \\
& \therefore A=16 \text { (DOST NEPDEO) } \\
& \Rightarrow 24 t^{2}-128 k+64=-104 \\
& \Rightarrow 24 k^{2}-122 k+168=0 \\
& \Rightarrow 3 k^{2}-6 k+21=0 \\
& 32 k-64=B \\
& B=<\begin{array}{l}
32 \times 3-64=32 \\
32 \times 7=64=\frac{32}{3}
\end{array}
\end{aligned}
$$

Question 6

H230/01
Mark Scheme
June 2018

Question 7

MARK SCHEME - AS MATHEMATICS - 7356/1 - JUNE 2020

Q	Marking Instructions	AO	Marks	Typical Solution
16(a)	Models the motion of the container and load with at least one side of the equation correct.	3.3	M1	$T-(m+2) g=(m+2) a$
	Forms fully correct equation	1.1b	A1	
	Forms fully correct equation for particle	3.3	B1	$5 g-T=5 a$
	Completes a rigorous argument by eliminating T and rearranging to express a in terms of m. AG	2.1	R1	$\begin{gathered} (3-m) g=(7+m) a \\ \quad \therefore a=\left(\frac{3-m}{m+7}\right) g \end{gathered}$
	Subtotal		4	
16(b)	Deduces correct limits Condone $0 \leq m<3$	2.2a	B1	$0<m<3$
	Subtotal		1	
16(c)	Uses appropriate constant acceleration equation to find the acceleration	3.4	M1	$s=u t+\frac{1}{2} a t^{2}$
	Calculates correct value for a	1.1b	A1	
	Forms equation for a in terms of m using their a value	3.4	M1	$4=\left(\frac{3-m}{m+7}\right) g$
	Solves to find m. AWRT 0.10 Condone 0.1	3.2a	A1	$m=\frac{3 g-28}{4+g}=0.10 \mathrm{~kg}$
	Subtotal		4	
16(d)	Describes any valid assumption not related to those assumptions already stated in the question. Eg The particle is at least 2 m above the ground Eg The particle does not collide with the load	3.5b	E1	I assumed that the top of the container does not reach the pulley
	Subtotal		1	
	Question Total		10	

Question 8

Question		Answer	$\begin{array}{\|c\|} \hline \text { Marks } \\ \hline \text { B1 } \\ \hline \end{array}$		Guidance	
7	(a)	$(V=) \frac{1}{2} x(2 x) y=x^{2} y$ Slant height of the roof is $x \sqrt{2}$ $\begin{aligned} & (S=) 2 x y+2\left(\frac{1}{2}(2 x) x\right)+2(y x \sqrt{2}) \\ & y=\frac{600-2 x^{2}}{2 x(1+\sqrt{2})} \Rightarrow V=x^{2}\left(\frac{300-x^{2}}{x(1+\sqrt{2})}\right) \\ & V=x\left(300-x^{2}\right)\left(\frac{(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}\right) \\ & V=x\left(300-x^{2}\right)\left(\frac{1-\sqrt{2}}{1-2}\right)=(\sqrt{2}-1) x\left(300-x^{2}\right) \end{aligned}$		$\begin{gathered} \hline 1.1 \\ 3.1 \mathrm{a} \\ 2.1 \\ 3.3 \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	Correct simplified expression for the volume Allow $\sqrt{2 x^{2}}$ Attempt at surface area with at least three of the five faces correct - can be unsimplified Rearranges and makes y the subject and substitutes to give an expression for V in terms of x only Rationalises the denominator correctly $a=2, b=-1$	
7	(b)	$\frac{\mathrm{d} V}{\mathrm{~d} x}=k\left(300-3 x^{2}\right)$ $(k)\left(300-3 x^{2}\right)=0 \Rightarrow x=\ldots$ $x=10 \mathrm{~cm}$	M1* A1 M1dep* A1 $[4]$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	M1 for attempt at differentiation both powers reduced by 1 Sets $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$ and attempts to find x	Allow full marks ft their values of a and b
7	(c)	$V=828 \mathrm{~cm}^{3}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.4	cao	828.4271247...
7	(d)	$V\left(\right.$ or y) must be positive or $300-x^{2}>0$ so x cannot exceed $\sqrt{300} \mathrm{~cm}$	M1 A1 [2]	$\begin{gathered} \hline \mathbf{3 . 5 b} \\ \mathbf{1 . 1} \end{gathered}$	Explanation for constraint on x Correct value; accept e.g. 17.3 or better	

Question 9

Question 10

Question 10 - Notes

Question Number	Scheme	Marks
	Notes	
a	M1 for equation of motion for P with T not substituted, condone sign errors First A1 for a correct equation in a only (allow $\pm a$) Second A1 for given answer (units not needed)	
b	M1 for equation of motion for Q with neither T nor a substituted, condone sign errors First A1 for a correct equation in m only Second A1 for $m=4$ N.B. Whole system equn: $m g-3 g=$ a $(m+3$) may be used	
c	M1 for a complete method to find T_{1} (M0 if g used) First A1 for a correct equation (or equations) Second A1 for $\sqrt{ } 15,3.9$ or better $v=\sqrt{29.4 ~(5.4) ~ m a y ~ b e ~ f o u n d ~ i n ~ t h i s ~ p a r t ~ b u t ~ o n l y ~ g e t s ~ c r e d i t ~ i f ~ i t ~}$ appears in part (d)	First M1 for a complete method to find the speed of particles when Q hits the ground (M0 if using g) Second M1 dependent on first M1 for a complete method to find the additional time for P to come to rest (must be using g) A1 for 4.4 or 4.43
d	First B1 (generous) for shape. Graph does not need to go down as far as it goes up and ignore gradients. (B0 if it goes outside the range $0 \leq t \leq T_{3}$ or if a continuous vertical line is included) Second B1, dependent on first B1, ft on their $\sqrt{29.4, ~} T_{1}$ and T_{2} Allow T_{1} and T_{2} entered on the graph (rather than their numerical values)	
e		

