12Ma Pure Mini Test 04
 Graphs and tangents

Question 1

The curve C has equation $y=(x-2)(x-4)^{2}$
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-20 x+32$

The line l_{1} is the tangent to C at the point where $x=6$.
(b) Find the equation of l_{1}, giving your answer in the form $y=m x+c$, where m and c are constants to be found.

The line l_{2} is the tangent to C at the point where $x=a$.
Given that l_{1} and l_{2} are parallel and distinct.
(c) Find the value of a.

Question 2

The curve C has equation $y=\frac{4}{x}+k$, where k is a positive constant.
(a) Sketch a graph of C, stating the equation of
(i) any asymptote(s)
(ii) any point(s) of intersection with the axes

The line with equation $y=10-2 x$ is a tangent to C.
(b) Find the possible values for k.
(c) [Bonus Marks] Find the possible values for k using a different method.

