Question 1 (11 marks)

Question Number	Scheme	Marks	
(a)	0.7 Pass 0.3 Fail 0.5 Pass 0.3 Fail 0.5 Pass 0.3 Pass 0.3 Pass 0.1 Pass 0.9 Fail 0.9 Fail	B1 B1	
(b)	$1 - 0.3 \times 0.5 \times 0.7 \times 0.9 \underline{\text{or}} 0.7 + (0.3 \times 0.5) + (0.3 \times 0.5 \times 0.3) + (0.3 \times 0.5 \times 0.7 \times 0.1) \\ = \underline{0.9055}$	(2) M1 A1	
(c)	$\begin{bmatrix} P(P_1 \cup P_2 \text{Pass}) = \end{bmatrix} \frac{0.7 + "0.3" \times 0.5}{(b)}, = \frac{0.85}{"0.9055"} = 0.938707 = \text{awrt } \underline{0.939}$	(2) M1, A1ft A1	
(d)		(3) M1 dM1A1cso	
	Notes	(3)	
(a)	1 st B1 for correctly placing 0.3 and 0.5 2 ^{ad} B1 for correctly placing 0.7, 0.1 and 0.9		
(b)	Apart from (d), a correct answer with no incorrect working scores full marks. M1 for a correct expression (ft from their tree diagram) A1 for 0.9055 or exact equivalent e.g. 1811/2000 Accept 0.906 only if correct expr' seen		
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if < 1]. Num > Den M0 A1ft for correct numerator and their part (b) on denominator A1 for awrt 0.939 or accept exact fraction eg $\frac{1200}{1811}$		
(d)	 1st M1 for a correct expression for P(pass) in terms of p[condone p-(p-1)(p-0.2) etc] 2nd dM1 dep. on 1st M1 for expanding brackets and forming an equation in p Allow one slip Alcso correct processing leading to printed answer. No incorrect working seen. 		

Part (e) p=awrt 0.86 only

Q2 (7 marks)

Question Number	Scheme	Marks
	Width = 0.5 (cm)	Bi
	$1 \text{ cm}^2 \text{ rep's 4 babies } \underline{\text{or } 0.25 \text{ cm}^2 \text{ rep's 1 baby } \underline{\text{or their } h \times w} = 3.5 \underline{\text{or area}} = 3.5 \text{ cm}^2$	M1
	Height = $\frac{14}{16} \times 4 \div 0.5 = 7$ (cm)	A1
		(3)
а	Lower Quartile = $[2.5] + \frac{\frac{91}{4} - 16}{24} \times 0.5 = [2.5] + \frac{8.5}{24} \times 0.5$	M1
	= 2.50 + 0.177 = awrt 2.68	A1
(c)	$Q_1 = Q_1 = 3.14 = "2.68" = 0.46 > 0.41 = 3.55 = 3.14 = Q_1 = Q_2$	(2)
(7	So negative skew	A1
_		(3)
b	$\overline{w} = \frac{311.5}{98} = 3.17857 = awrt 3.18$	B1
	1051.125 -2 /0.00000 0.00000	M1
	$\sigma_w = \sqrt{\frac{1051.125}{98} - \overline{w}^2} = \sqrt{0.622448}; = 0.78895 = awrt 0.789$	A1
		(3)
(e)	$\frac{3("3.18"-3.14)}{"0.789"} = 0.152$	M1A1
		(2)
C)(i)	49 th value now 3.25 [or median in group $3.25 \le w < 3.50$] so median increases	B1 B1
(ii)	more higher values or Σfx increases so mean increases	(2)
	Notes	I
(a)	B1 0.5 only	
	M1 may be implied by correct height	
_	A1 correct height of 7(cm)	
a	M1 for any correct equation leading to correct fraction as part of $m =$ or $(m - [2.5$	i) =
	Ignore incorrect end point and watch out for "working down" Using 25 for 24.5	
	A1 awrt 2.68 allow exact fraction e.g. $\frac{257}{96}$ (allow 8.75 for 8.5 [or $\frac{515}{192}$] if $n + 1$ used))
(c)	M1 for use of $Q_1 = Q_1$ and $Q_1 = Q_1$ (o.e.) ft their Q_1 [or correct inequality and very	skew
	or a correct quartile inequality and space that the negative skew	-
	A1 for correctly concluding negative skew from their values. Their ft calc should be	correct
(b	B1 for awrt 3.18 (allow $\frac{89}{28}$)	
(b	20	
(b	B1 for awrt 3.18 (allow $\frac{89}{28}$) M1 for a correct expression (including square root) ft their mean ($\frac{\sqrt{122}}{14}$ scores M1) A1 for awrt 0.789 (accept $s = 0.79301 = awrt 0.793$)	
(b (e)	M1 for a correct expression (including square root) ft their mean $(\frac{\sqrt{122}}{14}$ scores M1)	
	M1 for a correct expression (including square root) ft their mean $(\frac{\sqrt{122}}{14} \text{ scores M1})$ A1 for awrt 0.789 (accept $s = 0.79301 = \text{awrt } 0.793$) M1 for correct substitution (ft their values and condone missing 3)	3.25)

Q3(9 marks)

Question	Scheme		Marks	AOs
3 (a)	$\log_{10} x = \log_{10} a + \log_{10} b^T$		M1	2.1
	$\log_{10} x = \log_{10} a + T \log_{10} b$		M1	1.1b
	$\log_{10} x = \log_{10} a + T \log_{10} b$		Al	1.1b
			(3)	
(b)	$\log b = 0.0348$ or $\log a = 2.0827$		M1	1.1b
	$a = 120.97 \dots$ awr	t 121	A1	1.1b
	b = 1.0834 awr	rt 1.08	Al	1.1b
			(3)	
(c)	The data is from 1963 to 2000 so this would be and therefore unreliable.	be extrapolation	B1	2.4
			(1)	
(d)	$x = 121 \times 1.08^{(1970 - 1950)} [= 563.975]$		M1	3.4
	= 564		Al	1.1b
Alternative	method		· · · · · ·	
	$Y = 0.0348 \times (1970 - 1950) + 2.0827 (=2)$ x = 10 ^{2.7787}	2.7787) and	M1	3.4
	= 601		Al	1.1b
			(2)	
	1		() marks)

Q4 (10 marks)

Question	Scheme	Marks	AOs
11(a)	(Discrete) Uniform distribution	B1	1.2
		(1)	
(b)	$4 \times \left(\frac{1}{4}\right)^3$	M1	3.4
	$=\frac{1}{16}$	A1	1.1b
		(2)	
(c)	use of P(two the same) = $1 - P(3 \text{ different}) - P(3 \text{ same})$	M1	3.1b
	$P(3 \text{ different}) = 1 \times \frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$	M1	2.1
	P(two the same) = $1 - \frac{3}{8} - \frac{1}{16} = \frac{9}{16}$	A1	1.1b
		(3)	
(d)	<i>X</i> ~Bin(200, 0.5)	B1	1.1b
		(1)	
(e)	e.g. All ducks equally likely to be hooked oe	B1	2.4
		(1)	
(f)	$P(X \ge 110) = 1 - P(X \le 109)$	M1	3.1b
	= 1 - 0.91051797		
	= 0.08948202 awrt 0.0895	A1	1.1b
		(2)	

Notes

(a)

B1 condone Uniform, but not continuous uniform or rectangular distribution.

(b) M1 use of p^3 (where 0)A1 1/16 oe(c) $<math>2^{nd}$ M1 any attempt at P(3 different) e.g. $m \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$ (where *m* is an integer) Alt e.g. P(getting *k*, *k*, not *k* in any order for 4 possible doubles) = $3 \times \frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} \times 4$ 1^{st} M1 $\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}$ seen or implied 2^{nd} M1 multiplies by 3 or multiplies by 4 A1 9/16 oe (c) B1 must be suitable comment in context (f) M1 correct method

A1 awrt 0.0895

Question 5 (Total 13 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\frac{27.29 - 28}{\sigma} = -1.6449$	M1	This mark is given for standardising as part of a method to find σ
	$\sigma = 0.4316$	A1	This mark is given for a correct value of σ
	P(D > K) = 0.6 or $P(D < K) = 0.4$	B1	This mark is given for finding two probablilties
	$\frac{k-28}{\sigma} = \frac{k-28}{0.4316} = 0.2533$	M1	This mark is given for using a normal model to find the probability
	<i>k</i> = 28.11	A1	This mark is given for a correct value for k
(b)	$Y \sim B(200, 0.55)$ so $W \sim N(110, 49.5)$	B1	This mark is given for setting up the normal distribution approximation of the binomial
	$P(Y < 100) \approx P(W < 99.5) = P$ $\left(Z < \frac{99.5 - 110}{\sqrt{49.5}}\right)$	M1	This mark is given for using the normal model with a continuity correction
	= 0.0678	A1	This mark is given for finding a correct value of the probability
(c)	$H_0: \mu = 28$ $H_1: \mu < 28$	B1	This mark is given for both hypotheses in terms of μ found correctly
	$\overline{D} \sim N\left(28, \frac{0.7^2}{20}\right)$	M1	This mark is given for a method to set up the normal distribution
	$P(\overline{D} < 27.72) = 0.0368$	A1	This mark is given for using the model to find a correct <i>p</i> -value
	p = 0.0368 < 0.05, so reject H ₀	M1	This mark is given for a correct comparison and non-contextual conclusion

There is sufficient evidence to support Hannah's belief that the mean amount of liquid put in each bottle is less than 28 ml	A1	This mark is given for a correct conclusion in context stated
---	----	---