Question Number	Scheme	Marks	
1	(=) (= ((((((((((((((((M1	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$. Must be using $v\mathbf{i}$.
	$(\mathbf{I} =)1.5\{\nu \mathbf{i} - (4\mathbf{i} + 6\mathbf{j})\}$		Condone u , v confusion.
			Ignore the left hand side
	$=1.5\{(v-4)\mathbf{i}-6\mathbf{j}\}$	A1	Or equivalent seen or implied
	$=1.3\{(v-4)1-6\mathbf{j}\}$		Condone subtraction the wrong way round. Ignore the left hand side
	$15^{2} + 5^{2} ((-4)^{2}, 5^{2})$	M1	Use of modulus. Allow for $p^2 + q^2 = 100$
	$\Rightarrow 15^2 = 1.5^2 \left\{ \left(v - 4 \right)^2 + 6^2 \right\}$		
	$(100 = (v-4)^2 + 36)$	A1	Correct unsimplified equation in v
	$(v^2 - 8v - 48 = 0)$	A1	Correct simplified equation in v seen or
	, ,	4.1	implied.
	$\Rightarrow v = 12$ or $v = -4$	A1 A1	One correct value Both correct values
	or $v = -4$	AI	Both correct values
		[7]	
1 alt1	N 15		
	Initial momentum = $(6\mathbf{i} + 9\mathbf{j})$ Ns	M1	Impulse momentum triangle.
	· •/		Accept √117 Ns
	$\cos \alpha = \frac{6}{\sqrt{117}} \left(= \frac{2}{\sqrt{13}} \right)$	A1	Or equivalent
	$m^2 + 117 - 2m\sqrt{117}\cos\alpha = 225$	M1	Use of cosine formula (final momentum m)
	$m^2 - 12m - 108 = 0$	A1	Or equivalent
	$\Rightarrow m = -6 \text{ or } m = 18$	A1	•
	$\Rightarrow v = 12$	A1	One correct value
	or $v = -4$	A1	Both correct values
		[7]	
1alt2	Initial momentum = $(6\mathbf{i} + 9\mathbf{j})$ Ns	M1	Impulse momentum triangle.
	(Accept √117 Ns
	$\sin \alpha = \frac{3}{\sqrt{2\pi}}$	A1	Or equivalent
	√13 ————————————————————————————————————		
	$\frac{15}{1} = \sqrt{117}$	M1	Use of sine formula
	$\frac{1}{\sin \alpha} = \frac{1}{\sin \theta}$		Coc of Sille formula
	$\Rightarrow \sin \theta = \frac{3}{5}$, $\theta = 36.9^{\circ}$ or $\theta = 143.1^{\circ}$	A1	
	$\frac{m}{\sin 86.8} = \frac{15}{\sin \alpha}$ or $\frac{m}{\sin 19.4} = \frac{15}{\sin (180 - \alpha)}$	A1	Correct equation in m
	$\Rightarrow v = 12$	A1	One correct value
	$\Rightarrow v = 12$ or $v = -4$	A1	One correct value Both correct values
	01 y = - 1	[7]	
	l .	1/1	

Question	Scheme	Marks	AOs		
2(a)	$F_{\text{max}} = \frac{1}{4} mg \cos \alpha = \frac{1}{5} mg$	B1	1.2		
	$mg \sin \alpha = \frac{3}{5}mg > \frac{1}{5}mg \Rightarrow \text{slides down}$	B1	2.2a		
(b)	(b)				
	Using work-energy principle to solve the problem	M1	3.4		
	$\frac{1}{2}m \times (7^2 - V^2) = \frac{1}{5}mg \times 2 \times \frac{25}{8}$	A1	1.1b		
	OR: $mg \times \frac{25}{8} \times \frac{3}{5} - \frac{1}{2}mV^2 = \frac{1}{5}mg \times \frac{25}{8}$	A1	1.1b		
	V = 4.9 or 4.95	A1	1.1b		
		(4)			
(c)	e.g. Include air resistance in the model.	B1	3.5c		
	B1: Other refinements e.g. allow for spin of box, dimensions of box, more accurate value of g	B1			
		(8 n	narks)		

Notes:

(a)

B1: Correct expression for max friction

B1: Correct deduction from comparing weight component with Fmax

(b)

M1: Using the work-energy principle with correct no. of terms (either start to finish or descent only)

A1: Correct equation, condone 1 error

A1: Correct equation

A1: 4.9 or 4.95 (m)

(c)

B2: One mark for each improvement

Question Number	Scheme	Marks	Notes
3.	Use of $P = 15F_1$ or $P = 10F_2$	M1	Seen or implied
	$F_1 - R = 600 \times 0.2$	M1	Equation of motion. Needs all terms. Condone sign errors. Inclusion of <i>g</i> is an accuracy error
	$\frac{P}{15} - R = 120$	A1	Correct equation in P and their R
			Equation of motion. Needs all terms
	Up the slope: $F_2 - R - 600g \sin \theta = 0$	M1	and $F_2 \neq F_1$. Condone sign errors. Condone sin/cos confusion. Omission of g is an accuracy error
		A1	Unsimplified equation in P or F_2 with at most 1 error
	$\frac{P}{10} - R - 30g = 0$	A1	Correct equation in P and their same R
	$\frac{P}{15} - \frac{P}{10} + 30g = 120$	DM1	Solve for P. Dependent on the 2 preceding M marks
	P = 5220 (5200)	A1	Correct max 3 s.f.
		[8]	

4.

Question Number	Scheme	Marks
ба	v w w a solution of the soluti	
	For $A \updownarrow : 2u\sin 30^\circ = v\sin 60^\circ$	M1
	$v = \frac{2}{\sqrt{3}}u\left(=\frac{2\sqrt{3}}{3}u\right)$	Al
		[2]
6b	CLM: $2m \times 2u \cos 30^{\circ} - 3m \times u \cos 30^{\circ} = 3m \times w \cos \alpha - 2m \times v \cos 60^{\circ}$	M1A1
	$(u\cos 30^{\circ} + v = 3w\cos \alpha)$	
	$w\cos\alpha = \frac{1}{3}\left(\frac{\sqrt{3}}{2}u + \frac{2\sqrt{3}}{3}u\right) = \frac{7\sqrt{3}}{18}u$	A1
	For $B \updownarrow : u \sin 30^\circ = w \sin \alpha = \frac{u}{2}$	M1A1
	$\Rightarrow \tan \alpha = \frac{9}{7\sqrt{3}}$	M1
	⇒ deflected through $\theta = 150^{\circ} - \alpha = 113.4^{\circ}$ (113°) (1.98 radians)	M1A1
		[8]
	7 (2 200)	254.4
6c	Impact law: $w\cos\alpha + v\cos60^\circ = e(3u\cos30^\circ)$	M1A1
	$\left(\frac{7\sqrt{3}}{18}u + \frac{2\sqrt{3}}{3}u \times \frac{1}{2} = e \times \frac{3\sqrt{3}}{2}u\right)$	
	$e = \frac{13}{27} (= 0.48)$	A1
		[3]

4d

Impulse between spheres acts horizontally i.e. parallel to the plane ⇒ momentum conserved horizontally B1 2.4		B1	2.4
--	--	----	-----

Question Number	Scheme	Marks	Notes	
8a	$ \begin{array}{cccc} v & \longrightarrow & \longleftarrow & v \\ A & & & B \\ A & & & A \\ \hline A & & & A \\ \hline A & & & A \\ \hline A & & & & A \\ \hline A & & & & & A \\ \hline A & & & & & & A \\ \hline A & & & & & & A \\ \hline A & & & & & & & A \\ \hline A & & & & & & & & A \\ \hline A & & & & & & & & & A \\ \hline A & & & & & & & & & & & A \\ \hline A & & & & & & & & & & & & & & A \\ \hline A & & & & & & & & & & & & & & & & & & &$			
	Impulse on A: $8mu = 3mv - 3m \times \frac{u}{3}$	M1	Terms dimensionally correct. Must be subtracting. Condone sign errors. Must be combining correct mass and speed	
	v = 3u	A1		
	Impulse on <i>B</i> : $8mu = 4mu + 4mw$	M1	Terms dimensionally correct. Condone sign errors Or use CLM: $9mu - 4mw = 3m\frac{u}{3} + 4mu$ Must be combining correct mass and	
			speed	
	w = u	A1	•	
	Impact law: $u - \frac{u}{3} = e(3u + u)$	M1	Used the right way round. Condone sign errors	
	$e = \frac{1}{6}$	A1		
	Award first 4 marks in order on the scheme. in place of whichever impulse equation is no		CLM equation, if used, should be given	
	Watch out for sign errors in the equations If they have $3mv + 4mw$ in the equation for CLM they might combine this with $w = -u$ to obtain a "correct" answer. The sign error in the CLM is due to a misread so the maximum score for this			
	double sign error is 4/6			
		[6]		

	2d		Or find distances from the first impact:
8b	Gap when <i>B</i> hits wall = $\frac{2d}{3}$	B1	$s_A = \frac{d}{3} + \frac{u}{3}t$ and $s_B = d - \frac{u}{4}t$
	Speed of rebound from wall = $\frac{u}{4}$	B1	Allow + / -
	Time to close gap = $\frac{\frac{2d}{3}}{\frac{u}{3} + \frac{u}{4}}$	M1	
	$=\frac{3u}{7u}$	A1	
	Distance from wall = $\frac{8d}{7u} \times \frac{u}{4}$	DM1	Dependent on the preceding M1
	Distance from wall $=\frac{8a}{7u} \times \frac{u}{4}$ $=\frac{2d}{7}$	A1 [6]	
8balt	Time for $A \frac{d-x}{u/3} \left(= \frac{3d-3x}{u} \right)$	В1	
	Speed of rebound from wall = $\frac{u}{4}$	B1	
	Time for $B = \frac{d}{u} + \frac{x}{u/4}$	M1	
	$\left(=\frac{d+4x}{u}\right)$	A1	
	3d - 3x = d + 4x		Solve for <i>x</i> Dependent on the preceding M1
	$x = \frac{2d}{7}$	A1 [6]	
		[12]	

Question	Scheme	Marks	AOs
6(a)	Overall strategy to set up an equation in one unknown using equilibrium condition and resolving vertically: $2T \times \frac{4}{5} = 4mg$	M1	3.1a
	$T = \frac{5mg}{2}$	Al	1.1b
	Use of Hooke's Law	M1	3.1a
	$\frac{5mg}{2} = \frac{5mg}{3} \frac{\left(5a - \frac{1}{2}l\right)}{\frac{1}{2}l} \text{or} \frac{5mg}{3} \frac{(10a - l)}{l}$	Al	1.1b
	l = 4a *	Al*	1.1b
		(5)	
(b)	Max speed is at equilibrium position	B1	3.1a
	Use of EPE = $\frac{\lambda x^2}{2l}$	M1	3.1a
	Use of conservation of energy principle	M1	3.1a
	$5mg \left((6a)^2 + (2a)^2 \right) = 4ma \times 4a + \frac{1}{4ma^2}$	A1	1.1b
	$\frac{5mg}{3\times8a}\left\{(6a)^2 - (2a)^2\right\} = 4mg \times 4a - \frac{1}{2}4mv^2$	A1	1.1b
	$v = \sqrt{\frac{14ag}{3}}$	A1	1.1b
		(6)	

(11 marks)

Notes:

(a)

M1: Correct no. of terms with *T* resolved and correct equation in *T* only

A1: Correct tension

M1: Use of Hooke's Law

A1: Correct unsimplified equation

A1*: Given answer

(b)

B1: Use of max speed at equilm to solve the problem

M1: Use of EPE formula

M1: Use of Conservation of energy to solve the problem

A1: Correct unsimplified equation with one error

A1: Correct unsimplified equation

A1: cao oe

Question	Scheme	Marks	AOs
7(a)	At A_1 : Horiz component = $14\cos\alpha$	B1	3.4
	At A_1 : Vert component = $\frac{1}{2}$.14sin α	B1	3.4
	$\tan \beta = \frac{\text{vert component}}{\text{horiz component}} \left(= \frac{1}{2} \tan \alpha = \frac{3}{8} \right)$	M1	3.1b
	$\beta = 20.6^{\circ}$ or 0.359 rad (or better)	A1	1.1b
		(4)	
(b)	Since no air resistance, motion symmetrical so vertical component down at A_1 is equal to vertical component up at O ,	B1	2.4
		(1)	
(c)	$(\uparrow):-14\sin\alpha=14\sin\alpha-gt_1$	M1	3.4
	$t_1 = \frac{2 \times 14 \sin \alpha}{g}$	Al	1.1b
	$t_2 = \frac{2 \times 7 \sin \alpha}{g}$	Al	1.1b
	Total time = $2.6 \text{ or } 2.57 \text{ (s)}$	Al	1.1b
		(4)	
(d)	At A_n : Horiz component = $14\cos\alpha$	B1	3.4
	At A_n : Vert component = $(\frac{1}{2})^n 14 \sin \alpha$	B1	3.4
	$\tan \phi = \frac{3}{2^{n+2}} \text{oe}$	В1	3.1b
		(3)	
(e)	Ball continues to bounce with the size of the angle to the ground decreasing	В1	3.2a
		(1)	

at a constant speed of 11.2 m s $^{-1}$. B1 2.4	(f)	After hitting the ground at A_1 , the ball moves along the ground	B1	2.4
(2)		at a constant speed of 11.2 m s ⁻¹ .	B1	2.4
			(2)	

(15 marks)

Notes:

(a)

B1: Using NIL as a model to obtain the horiz component at A_1

B1: Using NIL as a model to obtain the vert component at A_1

M1: Using the components found above and tan to solve the problem – allow reciprocal for this mark

A1: Accept degrees or radians

(b)

B1: No air resistance means motion is symmetrical

(c)

M1: Using the model and vert motion to find the time from O to A_1

A1: $\sin \alpha$ does not need to be substituted

A1: $\sin \alpha$ does not need to be substituted

A1: Either 2 or 3 sf answers only

(d)

B1: Using NIL as the model to obtain the horiz component at A_n

B1: Using NIL to obtain the vert component at A_n

B1: Solving the problem to produce any equivalent form

(e)

B1: A clear explanation

(f)

B1: Clear description

B1: Constant speed and 11.2 (m s⁻¹)