Mr. Chan's 13FM Complex Numbers Questions by Topic Pack

https://www.youtube.com/watch?v=MPIcHp

Ts gI

13Fm Core Pure - C+iS Complex Numbers - A Level Further Maths - Exercise 1E Q6

https://youtu.be/6P0HtEZ9fdE

13Fm Core Pure - Roots of Complex Numbers - A Level Further Maths - Review Exercise 1 Q11a
74 views • 9 Mar 2020
(3) SoHokMaths By A. Chan

- 420 subscribers

https://youtu.be/kyVNVVw lao

13Fm Core Pure - Roots of Complex Numbers Loci - A Level Further Maths - Review Exercise 1 Q11b
66 views • 9 Mar 2020
https://www.youtube.com/watch?v=Iirsoc5
 B8S\&

		12.56637061436			
Sin (π)					
					0
$2 \pi \div 8$					
Details		0.7853981634			
IFT]	ALPHA	\leftarrow	\rightarrow	MODE	2nd
	solve	\uparrow	W	d/dx	£ \quad п
OPTN	CALC	\uparrow	\downarrow	$\int \mathrm{dx}$	x
\bmod + R	$3 \sqrt{3}$	${ }^{x^{3}-\cot }$	w/ cot-1	10x	${ }^{\text {ex }}$
a/b	$\sqrt{ } \mathrm{x}$	x^{2}	xy	$\log _{\mathrm{a}} \mathrm{x}$	Ln
Log ${ }^{\text {a }}$	FACt b	$x!$	$\sin ^{-1} \mathrm{~d}$	$\cos ^{-1}{ }^{-1}$	$\mathrm{Tan}^{-1} \mathrm{f}$
(-)	- '"	x^{-1}	Sin	Cos	Tan
RCL CRLV	4is	Abs	By	$\mathrm{ab} / \mathrm{c}=\mathrm{z}$	$\underline{M-3}$
STO	ENG	1)	$\mathrm{S}=\mathrm{D}$	M+

7	8	9	DEL CLR

MATRIX	VECTOR	FUNC HELP	¢CD nCr LCM
4	5	6	$\times \quad \div$

STAT	CMPLX	DISTR	Pol Cell	Rec Floor
1	2	3	+	-

| CopyPaste RantRanIn1 | π | e | \% PreAns | History |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . | EXP | Ans | $=$ |

8. (a) Use de Moivre's theorem to
(i) show that
$\cos 5 \theta \equiv \cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$
(ii) find an expression for $\sin 5 \theta$ in terms of $\cos \theta$ and $\sin \theta$
(4)
(b) Hence show that

$$
\tan 5 \theta=\frac{t^{5}-10 t^{3}+5 t}{5 t^{4}-10 t^{2}+1}
$$

where $t=\tan \theta$ and $\cos 5 \theta \neq 0$
(2)
(c) Hence find a quadratic equation whose roots are $\tan ^{2} \frac{\pi}{5}$ and $\tan ^{2} \frac{2 \pi}{5}$

Give your answer in the form $a x^{2}+b x+c=0$ where a, b and c are integers to be found
(4)
(d) Deduce that $\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}$
(2)

Edexcel IAL F2 June 17 (Y13 Further Maths)

https://www.youtube.com/watch?v=YkqkTh

 dzX-8

IMAGINE. (Ultimate Mix, 2020) - John Lennon \& The Plastic ...
https://www.youtube.com > watch

Lyrics

Imagine there's no heaven
It's easy if you try
No hell below us
Above us only sky... More

There are three big style of A2 complex numbers questions:

1) General Trigonometry/Binomial
2) $C+i S$
3) Geometric Problems (nth Roots)

+ MEI uses \mathbf{j} instead \mathbf{i}
+I have included the full question so other "parts" of the question may be "cross topic" links
+Questions from Old Spec MEI FP2, OCR FP3, AQA FP2, IAL Edexcel F2, Edexcel FP2
+ Not all questions are included

General Trigonometry/Binomial

C+IS

```
+48. MEI Jan 2006
FP2
+51. MEI Jan 2007 +63. MEI JAN 2012
    FP2
+66. MEI JUNE 2012
    FP2
+57. MEI JUNE 2009 + 69. OCR JAN 2008
    FP2
```

+60. MEI JAN 2010 FP2
+63. MEI JAN 2012 FP2
+66. MEI JUNE 2012 FP2
+69. OCR JAN 2008 FP3
+71. Ocr June 2010 FP3
+73. OCR JAN 2013 FP3
+54. MEI Jan 2008 FP2
+57. MEI JUNE 2009
FP2

Geometric Problems (nth Roots)

$\frac{47 . \text { OCR JUNE } 2007}{-\underline{F P 3}}$
+79. OCR JUNE 2010 FP3
$+\frac{81 . ~ O C R ~ J A N ~}{2011}$
+83. AQA JAN 2010 FP2
+85. AQA JAN 2011 FP2

+99. MEI JUNE 2007 FP2
+102. MEI JAN 2009
(a) Show that

$$
\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=z^{6}-\frac{1}{z^{6}}-k\left(z^{2}-\frac{1}{z^{2}}\right)
$$

where k is a constant to be found.

Given that $z=\cos \theta+i \sin \theta$, where θ is real,
(b) show that
(i) $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$
(ii) $z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$
(c) Hence show that

$$
\begin{equation*}
\cos ^{3} \theta \sin ^{3} \theta=\frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta) \tag{4}
\end{equation*}
$$

(d) Find the exact value of

$$
\int_{0}^{\frac{\pi}{8}} \cos ^{3} \theta \sin ^{3} \theta d \theta
$$

[

Edexcel

IAL June 2015 FP

Question Number	Scheme	Notes	Marks
(a)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=\left(z^{2}-\frac{1}{z^{2}}\right.$		
	$=z^{6}-3 z^{2}+\frac{3}{z^{2}}-z^{-6}$	M1: Attempt to expand	M1A1
		A1: Correct expansion	
	$=z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)$	Correct answer with no errors seen	A1
			(3)
$\begin{gathered} \text { (a) } \\ \text { ALT } \end{gathered}$	$\left(z+\frac{1}{z}\right)^{3}=z^{3}+3 z+\frac{3}{z}+\frac{1}{z^{3}},\left(z-\frac{1}{z}\right)^{3}=z^{3}-3 z+\frac{3}{z}-\frac{1}{z^{3}}$		M1A1
	M1: Attempt to expand both cubic brackets A1: Correct expansions		
	$=z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)$	Correct answer with no errors	A1
			(3)
			(3)

(b)(i)(ii)	$z^{n}=\cos n \theta+i \sin n \theta$	Correct application of de Moivre	B1
	$z^{-n}=\cos (-n \theta)+i \sin (-n \theta)= \pm \cos n \theta \pm \sin n \theta$ but must be different from their z^{n}	Attempt z^{-n}	M1
	$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta^{*}, z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta^{*}$	$z^{-n}=\cos n \theta-i \sin n \theta$ must be seen	A1*
(c)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=(2 \cos \theta)^{3}(2 i \sin \theta)^{3}$		B1
	$z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)=2 i \sin 6 \theta-6 i \sin 2 \theta$	Follow through their k in place of 3	B1ft
	$-64 i \sin ^{3} \theta \cos ^{3} \theta=2 i \sin 6 \theta-6 i \sin 2 \theta$	Equating right hand sides and simplifying $2^{3} \times(2 \mathrm{i})^{3}(\mathrm{~B}$ mark needed for each side to gain M mark)	M1
	$\cos ^{3} \theta \sin ^{3} \theta=\frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta)$	$*$	A1cso

(c)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=(2 \cos \theta)^{3}(2 i \sin \theta)^{3}$		B1
	$z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)=2 i \sin 6 \theta-6 i \sin 2 \theta$	Follow through their k in place of 3	B1ft
	$-64 i \sin ^{3} \theta \cos ^{3} \theta=2 i \sin 6 \theta-6 i \sin 2 \theta$	Equating right hand sides and simplifying $2^{3} \times(2)^{3}(\mathrm{~B}$ mark needed for each side to gain M mark $)$	M1
	$\cos ^{3} \theta \sin ^{3} \theta=\frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta) *$		Alcso
			(4)

(d)	$\int_{0}^{\frac{\pi}{8}} \cos ^{3} \theta \sin ^{3} \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{8}} \frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta) \mathrm{d} \theta$		
	$=\frac{1}{32}\left[-\frac{3}{2} \cos 2 \theta+\frac{1}{6} \cos 6 \theta\right]_{0}^{\frac{\pi}{8}}$	M1: $p \cos 2 \theta+q \cos 6 \theta$	A1: Correct integration Differentiation scores M0A0
M1A1			
$=\frac{1}{32}\left[\left(-\frac{3}{2 \sqrt{2}}-\frac{1}{6 \sqrt{2}}\right)-\left(-\frac{3}{2}+\frac{1}{6}\right)\right]=\frac{1}{32}\left(\frac{4}{3}-\frac{5 \sqrt{2}}{6}\right)$	dM1: Correct use of limits - lower limit to have non-zero result. Dep on previous M mark	dM1A1	
	A1: Cao (oe) but must be exact		
			Total 14)

Edexcel IAL June 2016 F2

(a) Use de Moivre's theorem to show that

$$
\cos ^{5} \theta \equiv p \cos 5 \theta+q \cos 3 \theta+r \cos \theta
$$

where p, q and r are rational numbers to be found.
(b) Hence, showing all your working, find the exact value of

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos ^{5} \theta \mathrm{~d} \theta
$$

(a)

WAY $1 \quad\left(z+\frac{1}{z}\right)^{5}=z^{5}+5 z^{3}+10 z+\frac{10}{z}+\frac{5}{z^{3}}+\frac{1}{z^{5}}$
M1: Attempt to expand $\left(z \pm \frac{1}{z}\right)^{3}$
A1: Correct expansion with correct M1A1 powers of z.
May be implied
B1

| $z=$ | $\cos \theta+i \sin \theta \Rightarrow z+\frac{1}{z}=2 \cos \theta$ |
| ---: | :--- |\quad May be implied

M1
Uses at least one of $z^{5}+\frac{1}{z^{5}}=2 \cos 5 \theta$ or $z^{3}+\frac{1}{z^{3}}=2 \cos 3 \theta$

$\left(z+\frac{1}{z}\right)^{5}=32 \cos ^{5} \theta$		B 1
$\cos ^{5} \theta=\frac{1}{16} \cos 5 \theta+\frac{5}{16} \cos 3 \theta+\frac{5}{8} \cos \theta$	Correct expression	A 1
		(6)

WAY 2 (Using $\mathrm{e}^{\mathrm{i} \theta}$)		M1A1
$\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5}=\mathrm{e}^{\mathrm{Si} \theta}+5 \mathrm{e}^{3 \mathrm{j} i \theta}+10 \mathrm{e}^{\mathrm{i} \theta}+10 \mathrm{e}^{-\mathrm{i} \theta}+5 \mathrm{e}^{-3 \mathrm{i} \theta}+\mathrm{e}^{-5 i \theta}$	M1: Attempt to expand $\left(\mathrm{e}^{\mathrm{i} \theta} \pm \mathrm{e}^{-\mathrm{i} \theta}\right)^{5}$	
	A1: Correct expansion	
$2 \cos \theta=\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$	May be implied	B1
$\begin{gathered} =\mathrm{e}^{\mathrm{ji} \theta}+\mathrm{e}^{-\mathrm{si} \theta}+5\left(\mathrm{e}^{3 i \theta}+\mathrm{e}^{-\mathrm{3i} \theta}\right)+10\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)=2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta \\ \text { Uses one of } \mathrm{e}^{\mathrm{si} \theta}+\mathrm{e}^{-\mathrm{si} \theta}=2 \cos 5 \theta \text { or } \mathrm{e}^{3 i \theta}+\mathrm{e}^{-3 i \theta}=2 \cos 3 \theta \end{gathered}$		M1
$\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)^{5}=32 \cos ^{5} \theta$		B1
$\cos ^{5} \theta=\frac{1}{16} \cos 5 \theta+\frac{5}{16} \cos 3 \theta+\frac{5}{8} \cos \theta$	Correct expression	A1

WAY 3 (Using De Moivre on $\cos 5 \theta$ and identity for $\cos 3 \theta)$		
$\begin{array}{c}(\cos \theta+\mathrm{i} \sin \theta)^{5}=c^{5}+5 \mathrm{ic}^{4} s+10 c^{3} \mathrm{i}^{2} s^{2}+10 c^{2} \mathrm{i}^{3} s^{3}+5 \mathrm{i}^{4} s^{4}+\mathrm{i}^{3} s^{5} \\ \text { M1: Attempts to expand. NB may only consider real parts here. } \\ \text { A1: Correct real terms (may include i's) (Ignore imaginary parts for this mark) }\end{array}$	M1A1	
$\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$	Correct real terms with no i's	

(b)

Edexcel June 2011 FP2

(a) Use de Moivre's theorem to show that

$$
\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta
$$

Hence, given also that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$,
(b) find all the solutions of

$$
\sin 5 \theta=5 \sin 3 \theta
$$

in the interval $0 \leq \theta<2 \pi$. Give your answers to 3 decimal places.

Question Number	Scheme	Marks
(a)	$\sin 5 \theta=\operatorname{Im}(\cos \theta+\mathrm{i} \sin \theta)^{5}$ $5 \cos ^{4} \theta(\mathrm{i} \sin \theta)+10 \cos ^{2} \theta\left(\mathrm{i}^{3} \sin ^{3} \theta\right)+\mathrm{i}^{5} \sin ^{5} \theta$ $=\mathrm{i}\left(5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta\right)$ $\left(\operatorname{Im}(\cos \theta+\mathrm{i} \sin \theta)^{5}\right)=5 \sin \theta\left(1-\sin ^{2} \theta\right)^{2}-10 \sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\sin ^{5} \theta$ 	(in $5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta \quad(*)$ M1

(b)	$16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta=5\left(3 \sin \theta-4 \sin ^{3} \theta\right)$	M1
	$16 \sin ^{5} \theta-10 \sin \theta=0$	M1
	$\sin ^{4} \theta=\frac{5}{8} \quad \theta=1.095$	A1
	Inclusion of solutions from $\sin \theta=-\sqrt[4]{\frac{5}{8}}$	M1
	Other solutions: $\theta=2.046,4.237,5.188$ $\sin \theta=0 \Rightarrow \theta=0, \theta=\pi$ (3.142)	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$
		$\begin{array}{r} (6) \\ \mathbf{1 1} \\ \hline \end{array}$
(a) (b)	Award B if solution considers Imaginary parts and equates to $\sin 5 \theta$ $1^{\text {st }}$ M1 for correct attempt at expansion and collection of imaginary parts $2^{\text {nd }}$ M1 for substitution powers of $\cos \theta$ $1^{\text {st }} \mathrm{M}$ for substituting correct expressions $2^{\text {nd }} \mathrm{M}$ for attempting to form equation Imply $3^{\text {rd }} \mathrm{M}$ if 4.237 or 5.188 seen. Award for their negative root. Ignore 2π but $2^{\text {nd }} \mathrm{A} 0$ if other extra solutions given.	

Edexcel June 2013 FP2

The complex number $z=e^{i \theta}$, where θ is real.
(a) Use de Moivre's theorem to show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

where n is a positive integer.
(b) Show that

$$
\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
$$

(c) Hence find all the solutions of

$$
\cos 5 \theta+5 \cos 3 \theta+12 \cos \theta=0
$$

in the interval $0 \leq \theta<2 \pi$
(4) yoúr compléx

Imagine having
general
Trigónometry Binomiat in

(a)	$z^{n}+z^{-n}=\mathrm{e}^{\mathrm{inn} \theta}+\mathrm{e}^{-\mathrm{in} \theta}$	
$=\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta$		
$=2 \cos n \theta \quad *$	M1A1	

| Notes for Question |
| :--- | :--- |
| Question a |
| M1 for using de Moivre's theorem to show that either $z^{n}=\cos n \theta+i \sin n \theta$ or $z^{-n}=\cos n \theta-\mathrm{i} \sin n \theta$ |
| A1 for completing to the given result $\quad z^{n}+z^{n}=2 \cos n \theta \quad *$ |

(b) $\quad\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta$

$$
32 \cos ^{5} \theta=\left(z^{5}+z^{-5}\right)+5\left(z^{3}+z^{-3}\right)+10\left(z+z^{-1}\right)
$$

$$
=2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta
$$

$$
\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)
$$

Question b

B1 for using the result in (a) to obtain $\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta$ Need not be shown explicitly.
M1 for attempting to expand $\left(z+z^{-1}\right)^{5}$ by binomial, Pascal's triangle or multiplying out the brackets. If ${ }^{n} C_{r}$ is used do not award marks until changed to numbers
A1 for a correct expansion $\left(z+z^{-1}\right)^{5}=z^{5}+5 z^{3}+10 z+10 z^{-1}+5 z^{-3}+z^{-5}$
M1 for replacing $\left(z^{5}+z^{-5}\right),\left(z^{3}+z^{-3}\right),\left(z+z^{-1}\right)$ with $2 \cos 5 \theta, 2 \cos 3 \theta, 2 \cos \theta$ and equating their revised expression to their result for $\left(z+z^{-1}\right)^{5}=32 \cos ^{5} \theta$

Alcso for $\cos ^{5} \theta=\frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)$

$$
\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta=-2 \cos \theta
$$

$$
16 \cos ^{5} \theta=-2 \cos \theta
$$

$$
2 \cos \theta\left(8 \cos ^{4} \theta+1\right)=0
$$

$$
8 \cos ^{4} \theta+1=0 \quad \text { no solution }
$$

$$
\cos \theta=0
$$

$$
\theta=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

Question

M1 for attempting re-arrange the equation with one side matching the bracket in the result in (b) Question states "hence", so no other method is allowed.

A1 for using the result in (b) to obtain $16 \cos ^{5} \theta=-2 \cos \theta$ oe
B1 for stating that there is no solution for $8 \cos ^{4} \theta+1=0$ oe eg $8 \cos ^{4} \theta+1 \neq 0 \quad 8 \cos ^{4} \theta+1>0$ or "ignore" but $\cos \theta=\sqrt[4]{-\frac{1}{8}}$ without comment gets B0

A1 for $\theta=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ and no more in the range. Must be in radians, can be in decimals $(1.57 \ldots$, 4.71... 3 sf or better)

MEI JUNE 2006 FP2

2 (a) (i) Given that $z=\cos \theta+\mathrm{j} \sin \theta$, express $z^{n}+\frac{1}{z^{n}}$ and $z^{n}-\frac{1}{z^{n}}$ in simplified trigonometric form.
(ii) By considering $\left(z-\frac{1}{z}\right)^{4}\left(z+\frac{1}{z}\right)^{2}$, find A, B, C and D such that

$$
\begin{equation*}
\sin ^{4} \theta \cos ^{2} \theta=A \cos 6 \theta+B \cos 4 \theta+C \cos 2 \theta+D . \tag{6}
\end{equation*}
$$

(b) (i) Find the modulus and argument of $4+4 \mathrm{j}$.
(ii) Find the fifth roots of $4+4 \mathrm{j}$ in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.

Illustrate these fifth roots on an Argand diagram.
(iii) Find integers p and q such that $(p+q \mathrm{j})^{5}=4+4 \mathrm{j}$.

$\begin{aligned} & 2 \\ & (a)(i) \end{aligned}$	$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, \quad z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta$	B1B1 2	
(ii)	$\begin{aligned} & \left(z-\frac{1}{z}\right)^{4}\left(z+\frac{1}{z}\right)^{2}=64 \sin ^{4} \theta \cos ^{2} \theta \\ & \quad=z^{6}-2 z^{4}-z^{2}+4-\frac{1}{z^{2}}-\frac{2}{z^{4}}+\frac{1}{z^{6}} \\ & \quad=2 \cos 6 \theta-4 \cos 4 \theta-2 \cos 2 \theta+4 \\ & \sin ^{4} \theta \cos ^{2} \theta=\frac{1}{32} \cos 6 \theta-\frac{1}{16} \cos 4 \theta-\frac{1}{32} \cos 2 \theta+\frac{1}{16} \\ & \quad\left(A=\frac{1}{32}, B=-\frac{1}{16}, C=-\frac{1}{32}, D=\frac{1}{16}\right) \end{aligned}$	B1 M1 A1 M1 A1 ft A1 6	Expansion $z^{6}+\ldots+z^{-6}$ Using $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$ with $n=2,4$ or 6 . Allow M1 if used in partial expansion, or if 2 omitted, etc
(b)(i)	$\|4+4 \mathrm{j}\|=\sqrt{32}, \quad \arg (4+4 \mathrm{j})=\frac{1}{4} \pi$	B1B1 2	Accept 5.7; 0.79, 45°

AQA JAN 2006 FP2

6 It is given that $z=\mathrm{e}^{\mathrm{i} \theta}$.
(a) (i) Show that

$$
z+\frac{1}{z}=2 \cos \theta
$$

(2 marks)
(ii) Find a similar expression for

$$
\begin{equation*}
z^{2}+\frac{1}{z^{2}} \tag{2marks}
\end{equation*}
$$

(iii) Hence show that

$$
\begin{equation*}
z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}=4 \cos ^{2} \theta-2 \cos \theta \tag{3marks}
\end{equation*}
$$

(b) Hence solve the quartic equation

$$
z^{4}-z^{3}+2 z^{2}-z+1=0
$$

giving the roots in the form $a+\mathrm{i} b$.

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$z+\frac{1}{z}=\cos \theta+\mathrm{i} \sin \theta+$			$\operatorname{Or~} \mathrm{z}+\frac{1}{z}=\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}$
	$\cos (-\theta)+\mathrm{i} \sin (-\theta)$	M1		
	$=2 \cos \theta$	A1	2	AG
(ii)	$z^{2}+\frac{1}{z^{2}}=\cos 2 \theta+i \sin 2 \theta$			
	$+\cos (-2 \theta)+\mathrm{i} \sin (-2 \theta)$	M1		
	$=2 \cos 2 \theta$	A1	2	OE
(iii)	$z^{2}-z+2-\frac{1}{z}+\frac{1}{z^{2}}$			
	$=2 \cos 2 \theta-2 \cos \theta+2$	M1		
	Use of $\cos 2 \theta=2 \cos ^{2} \theta-1$	m1		
	$=4 \cos ^{2} \theta-2 \cos \theta$	A1	3	AG

(b)	$z+\frac{1}{z}=0 \quad z= \pm \mathrm{i}$	M1A1		Alternative:	
	$z+\frac{1}{z}=1 \quad z^{2}-z+1=0$	M1A1		$\cos \theta=0 \quad \theta= \pm \frac{1}{2} \pi$	M1
				$z= \pm \mathrm{i}$	A1
	$z=\frac{1 \pm \mathrm{i} \sqrt{3}}{2}$	A1F	5	$\cos \theta=\frac{1}{2} \quad \theta= \pm \frac{1}{3} \pi$	M1
	Accept solution to (b) if done otherwise			$z=\mathrm{e}^{ \pm \frac{1}{3} \pi \mathrm{i}}=\frac{1}{2}(1 \pm \mathrm{i} \sqrt{3})$	A1 A1
	Alternative				
	If $\theta=+\frac{1}{2} \pi \quad \theta=\frac{1}{3} \pi$	M1			
	$z=\mathrm{i} \quad \mathrm{z}=\frac{1+\sqrt{3} \mathrm{i}}{2}$	A1			
	Or any correct z values of θ	M1			
	Any 2 correct answers	A1			
	One correct answer only	B1			
	Total		12		

7 (a) six roots of the equation $z^{6}=1$, giving your answers in the form $\mathrm{e}^{\mathrm{i} \phi}$, where $-\pi<\phi \leqslant \pi$.
(b) It is given that $w=\mathrm{e}^{\mathrm{i} \theta}$, where $\theta \neq n \pi$.
(i) Show that $\frac{w^{2}-1}{w}=2 \mathrm{i} \sin \theta$.
(2 marks)
(ii) Show that $\frac{w}{w^{2}-1}=-\frac{\mathrm{i}}{2 \sin \theta}$.
(iii) Show that $\frac{2 \mathrm{i}}{w^{2}-1}=\cot \theta-\mathrm{i}$.
(2 marks)
(3 marks)
(iv) Given that $z=\cot \theta-\mathrm{i}$, show that $z+2 \mathrm{i}=z w^{2}$.
(2 marks)
(c) (i) Explain why the equation

$$
(z+2 \mathrm{i})^{6}=z^{6}
$$

has five roots.
(1 mark)
(ii) Find the five roots of the equation

$$
(z+2 \mathrm{i})^{6}=z^{6}
$$

giving your answers in the form $a+\mathrm{i} b$.
(4 marks)

AQA

 JUNE2006 FP2

MFP2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$z=\mathrm{e}^{\frac{2 k \pi \mathrm{i}}{6}}, \quad k=0, \pm 1, \pm 2,3$	$\begin{gathered} \text { M1 } \\ \text { A2, } 1,0 \end{gathered}$	3	OE M1A1 only if: (1) range for k is incorrect eg $0,1,2,3,4,5$ (2) i is missing
(b)(i)	$\frac{w^{2}-1}{w}=w-\frac{1}{w}=2 \mathrm{i} \sin \theta$	M1A1	2	AG
(ii)	$\frac{w}{w^{2}-1}=\frac{1}{2 \mathrm{i} \sin \theta}$	M1		
	$=-\frac{i}{2 \sin \theta}$	A1	2	AG
(iii)	$\frac{2 \mathrm{i}}{w^{2}-1}=\frac{-2 \mathrm{i} w^{-1} \mathrm{i}}{2 \sin \theta}$	M1		$\text { Or for } \frac{1}{\sin \theta \mathrm{e}^{\mathrm{i} \theta}}$
	$=\frac{1}{\sin \theta}(\cos \theta-\mathrm{i} \sin \theta)$	A1		
	$=\cot \theta-i$	A1	3	AG
(iv)	$z=\frac{2 \mathrm{i}}{w^{2}-1} \text { Or } z+2 \mathrm{i}=\frac{2 \mathrm{i}}{w^{2}-1}+2 \mathrm{i}$	M1		ie any correct method
	$z+2 \mathrm{i}=z w^{2}$	A1	2	AG

$\begin{array}{r} \text { (c)(i) } \\ \text { (ii) } \end{array}$	No coefficient of z^{6} $\begin{aligned} & \left(w^{2}\right)^{6}=1 \quad w^{2}=\mathrm{e}^{\frac{k \pi \mathrm{i}}{3}} \\ & z=\cot \frac{k \pi}{6}-\mathrm{i}, \quad k= \pm 1, \pm 2,3 \end{aligned}$	$\begin{gathered} \text { E1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A2,1,0 } \end{gathered}$	1 4	Alternatively: $\begin{aligned} & z+2 \mathrm{i}=\mathrm{e}^{\frac{k \pi \mathrm{i}}{3}} z \quad \mathrm{~B} 1 \\ & \qquad z=\frac{2 \mathrm{i}}{\mathrm{e}^{\frac{k \pi \mathrm{i}}{3}}-1} \quad \mathrm{M} 1 \\ & \text { roots A2,1,0 } \\ & \text { (NB roots are } \pm \sqrt{3}-\mathrm{i} ; \pm \frac{1}{\sqrt{3}}-\mathrm{i} ;-\mathrm{i} \text {) } \end{aligned}$
	Total		17	

AQA JAN 2007 FP2

5 (a) Prove by induction that, if n is a positive integer,

$$
\begin{equation*}
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \tag{5marks}
\end{equation*}
$$

(b) Find the value of $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}$.
(c) Show that

$$
\begin{equation*}
(\cos \theta+\mathrm{i} \sin \theta)(1+\cos \theta-\mathrm{i} \sin \theta)=1+\cos \theta+\mathrm{i} \sin \theta \tag{3marks}
\end{equation*}
$$

(d) Hence show that

$$
\begin{equation*}
\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0 \tag{4marks}
\end{equation*}
$$

MFP2 (cont)

Q	Solution	Marks	Total	Comments
5(a)	Assume true for $n=k$ $(\cos \theta+\mathrm{i} \sin \theta)^{k+1}$			
	$=(\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta)$	M1		
	Multiply out	A1		Any form
	$=\cos (k+1) \theta+\mathrm{isin}(k+1) \theta$	A1		
	True for $n=1$ shown	B1		
	$P(k) \Rightarrow P(k+1)$ and $P(1)$ true	E1	5	Allow E1 only if previous 4 marks earned
(b)	$\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}=\cos \frac{6 \pi}{6}+i \sin \frac{6 \pi}{6}$	M1		
	$=-1$	A1	2	
(c)	$\begin{aligned} & (\cos \theta+\mathrm{i} \sin \theta)(1+\cos \theta-\mathrm{i} \sin \theta) \\ & =\cos \theta+\cos ^{2} \theta-\mathrm{i} \sin \theta \cos \theta \end{aligned}$	M1		
	$+\mathrm{i} \sin \theta+\mathrm{i} \sin \theta \cos \theta+\sin ^{2} \theta$	A1		(Accept $-\mathrm{i}^{2} \sin ^{2} \theta$)
				$\text { Or } \mathrm{e}^{\mathrm{i} \theta}\left(1+\mathrm{e}^{-\mathrm{i} \theta}\right)$
	$=1+\cos \theta+\mathrm{isin} \theta$	A1	3	AG

\begin{tabular}{|c|c|c|c|c|}
\hline (c) \& $$
\begin{aligned}
& (\cos \theta+\mathrm{i} \sin \theta)(1+\cos \theta-\mathrm{i} \sin \theta) \\
& =\cos \theta+\cos ^{2} \theta-\mathrm{i} \sin \theta \cos \theta \\
& \quad+\mathrm{i} \sin \theta+\mathrm{i} \sin \theta \cos \theta+\sin ^{2} \theta \\
& =1+\cos \theta+\mathrm{i} \sin \theta
\end{aligned}
$$ \& M1
A1

A1 \& \& $$
\begin{aligned}
& \text { (Accept } \left.-\mathrm{i}^{2} \sin ^{2} \theta\right) \\
& \text { Or } \mathrm{e}^{\mathrm{i} \theta}\left(1+\mathrm{e}^{-\mathrm{i} \theta}\right)
\end{aligned}
$$

\hline \& \& A1 \& 3 \& AG

\hline (d) \& $$
\theta=\frac{\pi}{6} \text { used }
$$ \& M1 \& \& In the context of part (c)

\hline \& Part (c) raised to power 6 \& M1 \& \&

\hline \& Use of result in part (b) \& A1 \& \&

\hline \& $$
\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+
$$ \& \& \&

\hline \& $$
\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0
$$ \& A1 \& 4 \& AG

\hline \& Total \& \& 14 \&

\hline
\end{tabular}

6 (a) (1) By applying De Moivre's theorem to $(\cos \theta+\mathrm{i} \sin \theta)^{3}$, show that

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

AQA

(ii) Find a similar expression for $\sin 3 \theta$.
(iii) Deduce that

$$
\tan 3 \theta=\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1}
$$

(b) (i) Hence show that $\tan \frac{\pi}{12}$ is a root of the cubic equation

$$
x^{3}-3 x^{2}-3 x+1=0
$$

(ii) Find two other values of θ, where $0<\theta<\pi$, for which $\tan \theta$ is a root of this cubic equation.
(c) Hence show that

$$
\tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}=4
$$

6(a)(i)	$\begin{aligned} & \cos 3 \theta+\mathrm{i} \sin 3 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{3} \\ & =\cos ^{3} \theta+3 \mathrm{i} \cos ^{2} \theta \sin \theta+3 \mathrm{i}^{2} \cos \theta \sin ^{2} \theta \\ & +\mathrm{i}^{3} \sin ^{3} \theta \\ & \text { Real parts: } \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	AG
(ii)	Imaginary parts: $\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta$	A1F	1	
(iii)	$\tan 3 \theta=\frac{\sin 3 \theta}{\cos 3 \theta}$	M1		Used
	$\begin{aligned} & =\frac{3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta} \\ & =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \end{aligned}$	A1F		Error in $\sin 3 \theta$
	$=\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1}$	A1	3	AG

8 (a) (i) Expand

$$
\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)
$$

(ii) Hence, or otherwise, expand

$$
\left(z+\frac{1}{z}\right)^{4}\left(z-\frac{1}{z}\right)^{2}
$$

(3 marks)
(b) (i) Use De Moivre's theorem to show that if $z=\cos \theta+\mathrm{i} \sin \theta$ then

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(3 marks)
(ii) Write down a corresponding result for $z^{n}-\frac{1}{z^{n}}$.
(c) Hence express $\cos ^{4} \theta \sin ^{2} \theta$ in the form

$$
A \cos 6 \theta+B \cos 4 \theta+C \cos 2 \theta+D
$$

where A, B, C and D are rational numbers.
(d) Find $\int \cos ^{4} \theta \sin ^{2} \theta \mathrm{~d} \theta$.
(2 marks)

AQA JUNE 2008 FP2

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(z+\frac{1}{z}\right)\left(z-\frac{1}{z}\right)=z^{2}-\frac{1}{z^{2}}$	B1	1	
(ii)	$\left(z^{2}-\frac{1}{z^{2}}\right)^{2}\left(z+\frac{1}{z}\right)^{2}$			
	$=\left(z^{4}-2+\frac{1}{z^{4}}\right)\left(z^{2}+2+\frac{1}{z^{2}}\right)$	M1A1		Alternatives for M1A1: $\left(z^{4}+4 z^{2}+6+\frac{4}{z^{2}}+\frac{1}{z^{4}}\right)\left(z^{2}-2+\frac{1}{z^{2}}\right)$ or
				$\left(z^{3}-\frac{1}{z^{3}}\right)^{2}-2\left(z^{3}-\frac{1}{z^{3}}\right)\left(z-\frac{1}{z}\right)+\left(z-\frac{1}{z}\right)^{2}$
	$=z^{6}+\frac{1}{z^{6}}+2\left(z^{4}+\frac{1}{z^{4}}\right)-\left(z^{2}+\frac{1}{z^{2}}\right)-4$	A1	3	CAO (not necessarily in this form)

(b)(i)	$\begin{aligned} z^{n}+\frac{1}{z^{n}}= & \cos n \theta+\mathrm{i} \sin n \theta \\ & \quad+\cos (-n \theta)+\mathrm{i} \sin (-n \theta) \\ = & 2 \cos n \theta \end{aligned}$	M1A1 A1	3	AG SC: if solution is incomplete and $(\cos \theta+\mathrm{i} \sin \theta)^{-n}$ is written as $\cos n \theta-i \sin n \theta$, award M1A0A1
(ii)	$z^{n}-z^{-n}=2 i \sin n \theta$	B1	1	
(c)	$\begin{aligned} & \text { RHS }=2 \cos 6 \theta+4 \cos 4 \theta-2 \cos 2 \theta-4 \\ & \text { LHS }=-64 \cos ^{4} \theta \sin ^{2} \theta \\ & \cos ^{4} \theta \sin ^{2} \theta \\ & =-\frac{1}{32} \cos 6 \theta-\frac{1}{16} \cos 4 \theta+\frac{1}{32} \cos 2 \theta+\frac{1}{16} \end{aligned}$	M1 A1F M1 A1	4	ft incorrect values in (a)(ii) provided they are cosines
(d)	$-\frac{\sin 6 \theta}{192}-\frac{\sin 4 \theta}{64}+\frac{\sin 2 \theta}{64}+\frac{\theta}{16}(+k)$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	ft incorrect coefficients but not letters A, B, C, D
	Total		14	

AQA JUNE 2009 FP2

5 (a) Prove by induction that, if n is a positive integer,

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

(b) Hence, given that

$$
z=\cos \theta+\mathrm{i} \sin \theta
$$

show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(c) Given further that $z+\frac{1}{z}=\sqrt{2}$, find the value of

$$
z^{10}+\frac{1}{z^{10}}
$$

7 (a) (i) Use de Moivre's Theorem to show that

$$
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta
$$

and find a similar expression for $\sin 5 \theta$.
(5 marks)
(ii) Deduce that

$$
\tan 5 \theta=\frac{\tan \theta\left(5-10 \tan ^{2} \theta+\tan ^{4} \theta\right)}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
$$

AQA

 JUNE2011 FP2
(b) Explain why $t=\tan \frac{\pi}{5}$ is a root of the equation

$$
t^{4}-10 t^{2}+5=0
$$

and write down the three other roots of this equation in trigonometrical form.
(3 marks)
(c) Deduce that

$$
\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}
$$

Imagine having

Q	Solution	Marks	Total	Comments
7(a)(i)	$1+\sqrt{3} i=2 e^{\frac{\pi i}{3}}$	B1		B1 both correct
	$1-\mathrm{i}=\sqrt{2} \mathrm{e}^{-\frac{\mathrm{mi}}{4}}$	B1B1	3	OE
(ii)	$2^{\frac{21}{2}}$ or equivalent single expression	B1F		No decimals; must include fractional powers
	Raising and adding powers of e	M1		
	$\frac{17 \pi}{12}$ or equivalent angle	AIF	3	Denominators of angles must be different
(b)	$z=\sqrt[3]{2^{10} \sqrt{2}} \mathrm{e}^{\frac{17 \pi \mathrm{i}}{36}+\frac{2 k \mathrm{ri}}{3}}$	M1		
	$\sqrt[3]{2^{10} \sqrt{2}}=8 \sqrt{2}$	B1		CAO
	$\theta=\frac{17 \pi}{36},-\frac{7 \pi}{36},-\frac{31 \pi}{36}$	A2,1F	4	Correct answers outside range: deduct 1 mark only
	Total		10	

8 (a) Use De Moivre's Theorem to show that, if $z=\cos \theta+\mathrm{i} \sin \theta$, then

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \tag{3marks}
\end{equation*}
$$

(b) (i) Expand $\left(z^{2}+\frac{1}{z^{2}}\right)^{4}$.
(ii) Show that

$$
\cos ^{4} 2 \theta=A \cos 8 \theta+B \cos 4 \theta+C
$$

where A, B and C are rational numbers.
(4 marks)
(c) Hence solve the equation

$$
8 \cos ^{4} 2 \theta=\cos 8 \theta+5
$$

for $0 \leqslant \theta \leqslant \pi$, giving each solution in the form $k \pi$.
(d) Show that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{4} 2 \theta \mathrm{~d} \theta=\frac{3 \pi}{16}
$$

Aqa

June 2012 FP2

Q	Solution	Marks	Total	Comments
8(a)	Use of $(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta$ $\cos (-n \theta)+\mathrm{i} \sin (-n \theta)=\cos n \theta-\mathrm{i} \sin n \theta$	M1 A1		Stated or used allow $\frac{2}{3}$ if this line is assumed allow if complex conjugate used
	$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$	A1	3	AG
(b)(i)	$z^{8}+4 z^{4}+6+4 z^{-4}+z^{-8}$	B1	1	allow in retrospect
(ii)	$z^{2}+\frac{1}{z^{2}}=2 \cos 2 \theta$ used	B1		Can be implied from (b)(i)
	$(2 \cos 2 \theta)^{4}=2 \cos 8 \theta+8 \cos 4 \theta+6$	M1A1		M1 for RHS A1 for whole line
	$\cos ^{4} 2 \theta=\frac{1}{8} \cos 8 \theta+\frac{1}{2} \cos 4 \theta+\frac{3}{8}$	$\mathrm{A} 1 \mathrm{~F}$	4	ft coefficients on previous line
	$\cos ^{4} 2 \theta=\left(\frac{1+\cos 4 \theta}{2}\right)^{2}$	(M1) (A1)		
	$\cos ^{2} 4 \theta=\frac{1}{2}(1+\cos 8 \theta)$	(B1)		
	Final result	(A1)		

$$
\begin{aligned}
& \text { (c) } 8 \cos ^{4} 2 \theta=\cos 8 \theta+5 \rightarrow \cos 4 \theta=\frac{1}{2} \\
& k=\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12} \\
& \text { (d) } \int_{0}^{\frac{\pi}{2}} \cos ^{4} 2 \theta \mathrm{~d} \theta= \\
& {\left[\frac{\sin 8 \theta}{64}+\frac{\sin 4 \theta}{8}+\frac{3}{8} \theta\right]_{0}^{\frac{\pi}{2}}} \\
& =\frac{3 \pi}{16}
\end{aligned}
$$

M1		ft provided simplifies to $\cos 4 \theta=p$
A1F		CAO
A1	3	CAO
M1		ie their $\cos ^{4} 2 \theta$
A1F		AG

8 (a) (i) Use de Moivre's theorem to show that

$$
\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta
$$

and find a similar expression for $\sin 4 \theta$.
(ii) Deduce that

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

(b) Explain why $t=\tan \frac{\pi}{16}$ is a root of the equation

AQA JUNE 2013 FP2

$$
t^{4}+4 t^{3}-6 t^{2}-4 t+1=0
$$

and write down the three other roots in trigonometric form.
(c) Hence show that

$$
\tan ^{2} \frac{\pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\tan ^{2} \frac{5 \pi}{16}+\tan ^{2} \frac{7 \pi}{16}=28
$$

Q	Solution	Marks	Total	Comments
8(a)(i)	$\cos 4 \theta+\mathrm{i} \sin 4 \theta=(\cos \theta+\mathrm{i} \sin \theta)^{4}$	M1		De Moivre \& attempt to expand RHS
	$\begin{aligned} & \cos ^{4} \theta+4 \mathrm{i} \cos ^{3} \theta \sin \theta+6 \mathrm{i}^{2} \cos ^{2} \theta \sin ^{2} \theta \\ & \quad+4 \mathrm{i}^{3} \cos \theta \sin ^{3} \theta+\mathrm{i}^{4} \sin ^{4} \theta \end{aligned}$	A1		any correct expansion
	Equating "their" real parts	m1		or imaginary parts
	$\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$	A1		AG be convinced
	$\sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta$	B1	5	correct
(ii)	$\tan 4 \theta=\frac{\text { "their expression for } " \sin 4 \theta}{\text { "their expression for } " \cos 4 \theta}$	M1		
	Division by $\cos ^{4} \theta$	m1		
	$\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$	A1	3	AG be convinced

(b)
$(\tan 4 \theta=1 \Rightarrow) \quad 1=\frac{4 t-4 t^{3}}{1-6 t^{2}+t^{4}}$
$1-6 t^{2}+t^{4}=4 t-4 t^{3}$
$\Rightarrow t^{4}+4 t^{3}-6 t^{2}-4 t+1=0$
$\theta=\frac{\pi}{16}$ satisfies $\tan 4 \theta=1$
$\Rightarrow \tan \frac{\pi}{16}$ is root of quartic equation
(other roots are) $\tan \frac{5 \pi}{16}, \tan \frac{9 \pi}{16}, \tan \frac{13 \pi}{16}$
(c) $\quad \sum \alpha=-4$ and $\sum \alpha \beta=-6$
$\sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta$

$$
(=16+12)=28
$$

$\tan \frac{9 \pi}{16}=-\tan \frac{7 \pi}{16} \quad, \tan \frac{13 \pi}{16}=-\tan \frac{3 \pi}{16}$
B1
$\tan ^{2} \frac{\pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\tan ^{2} \frac{5 \pi}{16}+\tan ^{2} \frac{7 \pi}{16}=28$
A1cso
when $\theta=\frac{\pi}{16}$
AG be convinced
both statements required

4
or equivalent tan expressions
watch for minus signs
correct formula
explicitly seen
AG must earn previous 4 marks

MEI Jan 2006 FP2

2 In this question, θ is a real number with $0<\theta<\frac{1}{6} \pi$, and $w=\frac{1}{2} \mathrm{e}^{3 \mathrm{j} \theta}$.
(i) State the modulus and argument of each of the complex numbers

$$
w, \quad w^{*} \text { and } \mathrm{j} w .
$$

Illustrate these three complex numbers on an Argand diagram.
(ii) Show that $(1+w)\left(1+w^{*}\right)=\frac{5}{4}+\cos 3 \theta$.

Infinite series C and S are defined by

$$
\begin{aligned}
& C=\cos 2 \theta-\frac{1}{2} \cos 5 \theta+\frac{1}{4} \cos 8 \theta-\frac{1}{8} \cos 11 \theta+\ldots \\
& S=\sin 2 \theta-\frac{1}{2} \sin 5 \theta+\frac{1}{4} \sin 8 \theta-\frac{1}{8} \sin 11 \theta+\ldots
\end{aligned}
$$

(iii) Show that $C=\frac{4 \cos 2 \theta+2 \cos \theta}{5+4 \cos 3 \theta}$, and find a similar expression for S.

(iii)

$$
\begin{aligned}
C+\mathrm{j} S & =\mathrm{e}^{2 \mathrm{j} \theta}-\frac{1}{2} \mathrm{e}^{5 \mathrm{j} \theta}+\frac{1}{4} \mathrm{e}^{8 \mathrm{j} \theta}-\ldots \\
& =\frac{\mathrm{e}^{2 \mathrm{j} \theta}}{1+\frac{1}{2} \mathrm{e}^{3 \mathrm{j} \theta}} \\
& =\frac{\mathrm{e}^{2 \mathrm{j} \theta}\left(1+\frac{1}{2} \mathrm{e}^{-3 \mathrm{j} \theta}\right)}{\left(1+\frac{1}{2} \mathrm{e}^{3 \mathrm{j} \theta}\right)\left(1+\frac{1}{2} \mathrm{e}^{-3 \mathrm{j} \theta}\right)} \\
& =\frac{\mathrm{e}^{2 \mathrm{j} \theta}\left(1+\frac{1}{2} \mathrm{e}^{-3 \mathrm{j} \theta}\right)}{\frac{5}{4}+\cos 3 \theta} \\
& =\frac{\mathrm{e}^{2 \mathrm{j} \theta}+\frac{1}{2} \mathrm{e}^{-\mathrm{j} \theta}}{\frac{5}{4}+\cos 3 \theta} \quad\left(=\frac{4 \mathrm{e}^{2 \mathrm{j} \theta}+2 \mathrm{e}^{-\mathrm{j} \theta}}{5+4 \cos 3 \theta}\right) \\
C= & \frac{4 \cos 2 \theta+2 \cos \theta}{5+4 \cos 3 \theta} \\
S & =\frac{4 \sin 2 \theta-2 \sin \theta}{5+4 \cos 3 \theta}
\end{aligned}
$$

M1	Obtaining a geometric series
M1	Summing an infinite geometric A1
series	
M1	Using complex conjugate of denom
A1	
M1	Equating real or imaginary parts A1 (ag)
A1	Correctly obtained

2 (a) You are given the complex numbers $w=3 \mathrm{e}^{-\frac{1}{12} \pi \mathrm{j}}$ and $z=1-\sqrt{3} \mathrm{j}$.
(i) Find the modulus and argument of each of the complex numbers w, z and $\frac{w}{z}$.
(ii) Hence write $\frac{w}{z}$ in the form $a+b \mathrm{j}$, giving the exact values of a and b.
(b) In this part of the question, n is a positive integer and θ is a real number with $0<\theta<\frac{\pi}{n}$.
(i) Express $\mathrm{e}^{-\frac{1}{2} \mathrm{j} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}$ in simplified trigonometric form, and hence, or otherwise, show that

$$
\begin{equation*}
1+\mathrm{e}^{\mathrm{j} \theta}=2 \mathrm{e}^{\frac{1}{2} \mathrm{j} \theta} \cos \frac{1}{2} \theta \tag{4}
\end{equation*}
$$

Series C and S are defined by

$$
\begin{aligned}
& C=1+\binom{n}{1} \cos \theta+\binom{n}{2} \cos 2 \theta+\binom{n}{3} \cos 3 \theta+\ldots+\binom{n}{n} \cos n \theta \\
& S=\binom{n}{1} \sin \theta+\binom{n}{2} \sin 2 \theta+\binom{n}{3} \sin 3 \theta+\ldots+\binom{n}{n} \sin n \theta
\end{aligned}
$$

(ii) Find C and S, and show that $\frac{S}{C}=\tan \frac{1}{2} n \theta$.

2(a)(i)	$\begin{aligned} & \|w\|=3, \quad \arg w=-\frac{1}{12} \pi \\ & \|z\|=2, \quad \arg z=-\frac{1}{3} \pi \\ & \left\|\frac{w}{z}\right\|=\frac{3}{2}, \quad \arg \frac{w}{z}=\left(-\frac{1}{12} \pi\right)-\left(-\frac{1}{3} \pi\right)=\frac{1}{4} \pi \end{aligned}$	B1 B1B1 B1B1 ft 5	Deduct 1 mark if answers given in form $r(\cos \theta+\mathrm{j} \sin \theta)$ but modulus and argument not stated. Accept degrees and decimal approxs
(ii)	$\begin{aligned} \frac{w}{z} & =\frac{3}{2}\left(\cos \frac{1}{4} \pi+\mathrm{j} \sin \frac{1}{4} \pi\right) \\ & =\frac{3}{2 \sqrt{2}}+\frac{3}{2 \sqrt{2}} \mathrm{j} \end{aligned}$	M1 A1 2	Accept $\sqrt{1.125}+\sqrt{1.125} \mathrm{j}$
(b)(i)	$\begin{aligned} & \mathrm{e}^{-\frac{1}{2} \mathrm{j} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta} \\ &=\left(\cos \frac{1}{2} \theta-\mathrm{j} \sin \frac{1}{2} \theta\right)+\left(\cos \frac{1}{2} \theta+\mathrm{j} \sin \frac{1}{2} \theta\right) \\ &=2 \cos \frac{1}{2} \theta \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	For either bracketed expression
	$\begin{aligned} 1+\mathrm{e}^{\mathrm{j} \theta} & =\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\left(\mathrm{e}^{-\frac{1}{2} \theta}+\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\right) \\ & =\mathrm{e}^{\frac{1}{2} \mathrm{j} \theta}\left(2 \cos \frac{1}{2} \theta\right) \end{aligned}$	M1 A1 ag 4	
	OR $\begin{aligned} 1+\mathrm{e}^{\mathrm{j} \theta} & =1+\cos \theta+\mathrm{j} \sin \theta \\ & =2 \cos ^{2} \frac{1}{2} \theta+2 \mathrm{j} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta \\ & =2 \cos \frac{1}{2} \theta\left(\cos \frac{1}{2} \theta+\mathrm{j} \sin \frac{1}{2} \theta\right) \\ & =2 \mathrm{e}^{\frac{1}{2} \theta} \cos \frac{1}{2} \theta \end{aligned}$		

(ii)	$\begin{aligned} & C+\mathrm{j} S=1+\binom{n}{1} \mathrm{e}^{\mathrm{j} \theta}+\binom{n}{2} \mathrm{e}^{2 \mathrm{j} \theta}+\ldots+\binom{n}{n} \mathrm{e}^{n \mathrm{j} \theta} \\ &=\left(1+\mathrm{e}^{\mathrm{j} \theta}\right)^{n} \\ &=2^{n} \mathrm{e}^{\frac{1}{2} n \theta \mathrm{j}} \cos ^{n} \frac{1}{2} \theta \\ & C=2^{n} \cos \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta \\ & S= 2^{n} \sin \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta \\ & \frac{S}{C}=\frac{2^{n} \sin \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta}{2^{n} \cos \left(\frac{1}{2} n \theta\right) \cos ^{n} \frac{1}{2} \theta}=\frac{\sin \left(\frac{1}{2} n \theta\right)}{\cos \left(\frac{1}{2} n \theta\right)}=\tan \left(\frac{1}{2} n \theta\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 ag } \end{aligned}$	Using (i) to obtain a form from which the real and imaginary parts can be written down Allow ft from $C+\mathrm{j} S=\mathrm{e}^{\frac{1}{2} n \theta \mathrm{j}} \times$ any real function of n and θ

MEI Jan 2008 FP2

2 (a) Find the 4 th roots of 16 j , in the form $r \mathrm{e}^{\mathrm{j} \theta}$ where $r>0$ and $-\pi<\theta \leqslant \pi$. Illustrate the 4 th roots on an Argand diagram.
(b) (i) Show that $\left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)=5-4 \cos \theta$.

Series C and S are defined by

$$
\begin{aligned}
& C=2 \cos \theta+4 \cos 2 \theta+8 \cos 3 \theta+\ldots+2^{n} \cos n \theta \\
& S=2 \sin \theta+4 \sin 2 \theta+8 \sin 3 \theta+\ldots+2^{n} \sin n \theta
\end{aligned}
$$

(ii) Show that $C=\frac{2 \cos \theta-4-2^{n+1} \cos (n+1) \theta+2^{n+2} \cos n \theta}{5-4 \cos \theta}$, and find a similar expression for S.

$$
\begin{array}{rl|l}
\hline C+\mathrm{j} S & =2 \mathrm{e}^{\mathrm{j} \theta}+4 \mathrm{e}^{2 \mathrm{j} \theta}+8 \mathrm{e}^{3 \mathrm{j} \theta}+\ldots+2^{n} \mathrm{e}^{n \mathrm{j} \theta} \\
& =\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-\left(2 \mathrm{e}^{\mathrm{j} \theta}\right)^{n}\right)}{1-2 \mathrm{e}^{\mathrm{j} \theta}} & \mathrm{M} 1 \\
& =\frac{2 \mathrm{e}^{\mathrm{j} \theta}\left(1-2^{n} \mathrm{e}^{n j \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)}{\left(1-2 \mathrm{e}^{\mathrm{j} \theta}\right)\left(1-2 \mathrm{e}^{-\mathrm{j} \theta}\right)} & \mathrm{M} 1 \\
& =\frac{2 \mathrm{e}^{\mathrm{j} \theta}-4-2^{n+1} \mathrm{e}^{(n+1) \mathrm{j} \theta}+2^{n+2} \mathrm{e}^{n \mathrm{j} \theta}}{5-4 \cos \theta} & \mathrm{M} 1 \\
C=\frac{2 \cos \theta-4-2^{n+1} \cos (n+1) \theta+2^{n+2} \cos n \theta}{5-4 \cos \theta} & \mathrm{~A} 2 \\
S=\frac{\mathrm{M} 1}{} & \mathrm{~A} 1 \mathrm{ag} \\
5-4 \cos \theta-2^{n+1} \sin (n+1) \theta+2^{n+2} \sin n \theta \\
& \mathrm{~A} 1
\end{array}
$$

MEI JUNE 2009 FP2

3 (a) (i) Sketch the graph of $y=\arcsin x$ for $-1 \leqslant x \leqslant 1$.
Find $\frac{d y}{d x}$, justifying the sign of your answer by reference to your sketch.
(ii) Find the exact value of the integral $\int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} \mathrm{~d} x$.
(b) The infinite series C and S are defined as follows.

$$
\begin{aligned}
& C=\cos \theta+\frac{1}{3} \cos 3 \theta+\frac{1}{9} \cos 5 \theta+\ldots \\
& S=\sin \theta+\frac{1}{3} \sin 3 \theta+\frac{1}{9} \sin 5 \theta+\ldots
\end{aligned}
$$

By considering $C+\mathrm{j} S$, show that

$$
C=\frac{3 \cos \theta}{5-3 \cos 2 \theta},
$$

and find a similar expression for S.

3(a)(i)	$\begin{aligned} & y=\arcsin x \Rightarrow \sin y=x \\ & \Rightarrow \frac{d x}{d y}=\cos y \\ & \Rightarrow \frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^{2}}} \end{aligned}$ Positive square root because gradient positive	G1 M1 A1 A1 B1	4	Correct basic shape (positive gradient, through (0,0) $\sin y=$ and attempt to diff. both sides $\operatorname{Or} \cos y \frac{d y}{d x}=1$ www. SC1 if quoted without working Dep. on graph of an increasing function
(ii)	$\begin{aligned} & \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x=\left[\arcsin \frac{x}{\sqrt{2}}\right]_{0}^{1} \\ & =\frac{\pi}{4} \end{aligned}$	A1		arcsin function alone, or any sine substitution $\frac{x}{\sqrt{2}}$, or $\int 1 d \theta \mathrm{www}$ without limits Evaluated in terms of π

(b) $C+j S=e^{j \theta}+\frac{1}{3} e^{3 j \theta}+\frac{1}{9} e^{5 j \theta}+\ldots$

Forming $C+j S$ as a series of powers Identifying geometric series and attempting sum to infinity or to n terms
Correct a and r
Sum to infinity
Multiplying numerator and denominator by $1-\frac{1}{3} e^{-2 j \theta}$ o.e.
Or writing in terms of trig functions and realising the denominator
Multiplying out numerator and denominator. Dep. on M1* Valid attempt to express in terms of trig functions. If trig functions used from start, M1 for using the compound angle formulae and Pythagoras
Dep. on M1*

Equating real and imaginary parts.

MEI JAN 2010 FP2

2 (a) Use de Moivre's theorem to find the constants a, b, c in the identity

$$
\cos 5 \theta \equiv a \cos ^{5} \theta+b \cos ^{3} \theta+c \cos \theta
$$

(b) Let

$$
\begin{aligned}
& C=\cos \theta+\cos \left(\theta+\frac{2 \pi}{n}\right)+\cos \left(\theta+\frac{4 \pi}{n}\right)+\ldots+\cos \left(\theta+\frac{(2 n-2) \pi}{n}\right), \\
& \text { and } S=\sin \theta+\sin \left(\theta+\frac{2 \pi}{n}\right)+\sin \left(\theta+\frac{4 \pi}{n}\right)+\ldots+\sin \left(\theta+\frac{(2 n-2) \pi}{n}\right) \text {, }
\end{aligned}
$$

where n is an integer greater than 1 .
By considering $C+\mathrm{j} S$, show that $C=0$ and $S=0$.
(c) Write down the Maclaurin series for e^{t} as far as the term in t^{2}.

Hence show that, for t close to zero,

$$
\begin{equation*}
\frac{t}{\mathrm{e}^{t}-1} \approx 1-\frac{1}{2} t \tag{5}
\end{equation*}
$$

2 (a)	$\begin{aligned} & \begin{array}{l} \cos 5 \theta+\mathrm{j} \sin 5 \theta=(\cos \theta+\mathrm{j} \sin \theta)^{5} \\ =\cos ^{5} \theta+5 \cos ^{4} \theta \mathrm{j} \sin \theta+10 \cos ^{3} \theta \mathrm{j}^{2} \sin ^{2} \theta \\ \quad+10 \cos ^{2} \theta \mathrm{j}^{3} \sin ^{3} \theta+5 \cos \theta \mathrm{j}^{4} \sin ^{4} \theta+\mathrm{j}^{5} \sin ^{5} \theta \\ = \\ =\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta+\mathrm{j}(\ldots) \end{array} \\ & \cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\ & =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & 6\end{array}$	```Using de Moivre Using binomial theorem appropriately Correct real part. Must evaluate powers of \(j\) Equating real parts Replacing \(\sin ^{2} \theta\) by \(1-\cos ^{2} \theta\) \(a=16, b=-20, c=5\)```
(b)	$\begin{aligned} & \text { C+ } \mathrm{j} S \\ & \quad=e^{\mathrm{j} \theta}+e^{\mathrm{j}\left(\theta+\frac{2 \pi}{n}\right)}+\ldots+e^{j\left(\theta+\frac{(2 n-2) \pi}{n}\right)} \end{aligned}$ This is a G.P. $\begin{aligned} & a=e^{\mathrm{j} \theta}, r=e^{\mathrm{j} \frac{2 \pi}{n}} \\ & \text { Sum }=\frac{e^{\mathrm{j} \theta}\left(1-\left(e^{\mathrm{j} \frac{2 \pi}{n}}\right)^{n}\right)}{1-e^{\mathrm{j} \frac{2 \pi}{n}}} \\ & \text { Numerator }=e^{\mathrm{j} \theta}\left(1-e^{2 \pi \mathrm{j}}\right) \text { and } e^{2 \pi \mathrm{j}}=1 \\ & \text { so sum }=0 \\ & \Rightarrow C=0 \text { and } S=0 \end{aligned}$	M1 A1 M1 A1 A1 E1 7	Forming series $C+\mathrm{j} S$ as exponentials Need not see whole series Attempting to sum finite or infinite G.P. Correct a, r used or stated, and n terms Must see j Convincing explanation that sum $=0$ $C=S=0$. Dep. on previous E1 Both E marks dep. on 5 marks above

(c)

MEI JAN 2012 FP2

2 (a) The infinite series C and S are defined as follows.

$$
\begin{aligned}
& C=1+a \cos \theta+a^{2} \cos 2 \theta+\ldots \\
& S=a \sin \theta+a^{2} \sin 2 \theta+a^{3} \sin 3 \theta+\ldots
\end{aligned}
$$

where a is a real number and $|a|<1$.
By considering $C+\mathrm{j} S$, show that $C=\frac{1-a \cos \theta}{1+a^{2}-2 a \cos \theta}$ and find a corresponding expression for S.
(b) Express the complex number $z=-1+\mathrm{j} \sqrt{3}$ in the form $r \mathrm{e}^{\mathrm{j} \theta}$.

Find the 4th roots of z in the form $r \mathrm{e}^{\mathrm{j} \theta}$.
Show z and its 4th roots in an Argand diagram.
Find the product of the 4 th roots and mark this as a point on your Argand diagram.

(a) (i) Show that

$$
1+\mathrm{e}^{\mathrm{j} 2 \theta}=2 \cos \theta(\cos \theta+\mathrm{j} \sin \theta)
$$

[2]

(ii) The series C and S are defined as follows.

$$
\begin{aligned}
& C=1+\binom{n}{1} \cos 2 \theta+\binom{n}{2} \cos 4 \theta+\ldots+\cos 2 n \theta \\
& S=\quad\binom{n}{1} \sin 2 \theta+\binom{n}{2} \sin 4 \theta+\ldots+\sin 2 n \theta
\end{aligned}
$$

By considering $C+\mathrm{j} S$, show that

$$
C=2^{n} \cos ^{n} \theta \cos n \theta
$$

and find a corresponding expression for S.
(b) (i) Express $\mathrm{e}^{\mathrm{j} 2 \pi / 3}$ in the form $x+\mathrm{j} y$, where the real numbers x and y should be given exactly.
(iii) Show that the length of a side of the triangle is $2 \sqrt{15}$.

Question			Answer	Marks	Guidance	
2	(a)	(ii)	$\begin{aligned} & C+\mathrm{j} S=1+\binom{n}{1} e^{\mathrm{j} 2 \theta}+\binom{n}{2} e^{\mathrm{j} 4 \theta}+\ldots+e^{\mathrm{j} 2 n \theta} \\ & =\left(1+e^{\mathrm{j} 2 \theta}\right)^{n} \\ & =2^{n} \cos ^{n} \theta(\cos \theta+\mathrm{j} \sin \theta)^{n} \\ & =2^{n} \cos ^{n} \theta(\cos n \theta+\mathrm{j} \sin n \theta) \\ & \Rightarrow C=2^{n} \cos ^{n} \theta \cos n \theta \\ & \text { and } S=2^{n} \cos ^{n} \theta \sin n \theta \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { A1(ag) } \\ \text { A1 } \\ \text { 171 } \end{gathered}$	Forming $C+{ }_{j} S$ Recognising as binomial expansion Applying (i) and De Moivre o.e. Completion www	Dependent on MIM1 above Need to see $e^{\mathrm{j} \theta}=\cos n \theta+\mathrm{j} \sin n \theta$ o.e.
2	(b)	(i)	$e^{\frac{\mathrm{j} \frac{2 \pi}{3}}{3}}=\cos \frac{2 \pi}{3}+\mathrm{j} \sin \frac{2 \pi}{3}=-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Must evaluate trigonometric functions	
2	(b)	(ii)	Other two vertices are $(2+4 j) e^{j \frac{2 \pi}{3}}$ $\begin{aligned} & =(2+4 \mathrm{j})\left(-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}\right) \\ & =(-1-2 \sqrt{3})+\mathrm{j}(-2+\sqrt{3}) \\ & \text { and }(2+4 \mathrm{j}) e^{\mathrm{j} \frac{4 \pi}{3}}=(2+4 \mathrm{j}) e^{. j \frac{2 \pi}{3}} \\ & =(2+4 \mathrm{j})\left(-\frac{1}{2}-\mathrm{j} \frac{\sqrt{3}}{2}\right) \\ & =(-1+2 \sqrt{3})+\mathrm{j}(-2-\sqrt{3}) \end{aligned}$	M1 AlAl M1 AlAl	Award for idea of rotation by $\frac{2 \pi}{3}$ May be given as co-ordinates Award for idea of rotation by $-\frac{2 \pi}{3}$ May be given as co-ordinates	e.g. use of $\arctan 2+\frac{2 \pi}{3}(3.202 \mathrm{rad})$ (must be 2) e.g. use of $\arctan 2+\frac{4 \pi}{3}(5.296 \mathrm{rad})$ (must be 2) If AOA0A0A0 award SC1 for awrt $-4.46-0.27 \mathrm{j}$ and $2.46-3.73 \mathrm{j}$

Question			Answer Length of $(2+4 \mathrm{j})=\sqrt{20}$ So length of side $=2 \sqrt{20} \cos \frac{\pi}{6}=2 \sqrt{20} \times \frac{\sqrt{3}}{2}$ $=2 \sqrt{15}$	Marks M1 A1(ag) [2]	Guidance	
2	(b)	(iii)			Complete method Completion www	Alternative: finding distance between $(2,4)$ and $(-1-2 \sqrt{3},-2+\sqrt{3})$ o.e.

OCR JAN 2008 FP3

Jan 2008

4 The integrals C and S are defined by

$$
C=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \cos 3 x \mathrm{~d} x \quad \text { and } \quad S=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \sin 3 x \mathrm{~d} x
$$

By considering $C+\mathrm{i} S$ as a single integral, show that

$$
C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right),
$$

and obtain a similar expression for S.
(You may assume that the standard result for $\int \mathrm{e}^{k x} \mathrm{~d} x$ remains true when k is a complex constant, so that $\left.\int \mathrm{e}^{(a+\mathrm{i} b) x} \mathrm{~d} x=\frac{1}{a+\mathrm{i} b} \mathrm{e}^{(a+\mathrm{i} b) x}.\right)$
$4 \quad(C+\mathrm{i} S=) \quad \int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x}(\cos 3 x+\mathrm{i} \sin 3 x)(\mathrm{d} x)$
$\cos 3 x+\mathrm{i} \sin 3 x=\mathrm{e}^{3 \mathrm{ix}}$
$\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{(2+3 \mathrm{i}) x}(\mathrm{~d} x)=\frac{1}{2+3 \mathrm{i}}\left[\mathrm{e}^{(2+3 \mathrm{i}) x}\right]_{0}^{\frac{1}{2} \pi}$
$=\frac{2-3 \mathrm{i}}{4+9}\left(\mathrm{e}^{\left(2+3 \mathrm{i} \frac{1}{2} \pi\right.}-\mathrm{e}^{0}\right)=\frac{2-3 \mathrm{i}}{13}\left(-\mathrm{ie}^{\pi}-1\right)$
$=\left\{\frac{1}{13}\left(-2-3 \mathrm{e}^{\pi}+\mathrm{i}\left(3-2 \mathrm{e}^{\pi}\right)\right\}\right.$
$C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right)$
$S=\frac{1}{13}\left(3-2 \mathrm{e}^{\pi}\right)$

For using de Moivre, seen or implied
For writing as a single integral in exp form
For correct integration (ignore limits)
For substituting limits correctly (unsimplified)
(may be earned at any stage)
For multiplying by complex conjugate of $2+3 i$

For equating real and/or imaginary parts

For correct expression AG
For correct expression

Ocr June 2010 FP3

5 Convergent infinite series C and S are defined by

$$
\begin{aligned}
& C=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta+\ldots \\
& S=\quad \frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta+\ldots
\end{aligned}
$$

(i) Show that $C+\mathrm{i} S=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}}$.
(ii) Hence show that $C=\frac{4-2 \cos \theta}{5-4 \cos \theta}$, and find a similar expression for S.

5 (i) $C+\mathrm{i} S=1+\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}+\frac{1}{4} \mathrm{e}^{2 \mathrm{i} \theta}+\frac{1}{8} \mathrm{e}^{3 \mathrm{i} \theta}+\ldots$

$$
=\frac{1}{1-\frac{1}{2} \mathrm{e}^{\mathrm{i} \theta}}=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}}
$$

M1 For using $\cos n \theta+\mathrm{i} \sin n \theta=\mathrm{e}^{\mathrm{i} n \theta}$ at least once for $n \geqslant 2$
A1 For correct series
M1 For using sum of infinite GP
A1 4 For correct expression AG
SR For omission of 1st stage award up to M0 A0 M1 A1 OEW
(ii)

$$
\begin{aligned}
& C+\mathrm{i} S=\frac{2\left(2-\mathrm{e}^{-\mathrm{i} \theta}\right)}{\left(2-\mathrm{e}^{\mathrm{i} \theta}\right)\left(2-\mathrm{e}^{-\mathrm{i} \theta}\right)} \\
& =\frac{4-2 \mathrm{e}^{-\mathrm{i} \theta}}{4-2\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)+1}=\frac{4-2 \cos \theta+2 \mathrm{i} \sin \theta}{4-4 \cos \theta+1} \\
& \Rightarrow C=\frac{4-2 \cos \theta}{5-4 \cos \theta}, \quad S=\frac{2 \sin \theta}{5-4 \cos \theta}
\end{aligned}
$$

M1 For multiplying top and bottom by complex conjugate

M1 For reverting to $\cos \theta$ and $\sin \theta$ and equating $\operatorname{Re} O R \operatorname{Im}$ parts

A1 For correct expression for C AG
A1 4 For correct expression for S

Jan 2013

7 Let $S=\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{2 \mathrm{i} \theta}+\mathrm{e}^{3 \mathrm{i} \theta}+\ldots+\mathrm{e}^{10 \mathrm{i} \theta}$.
(i) (a) Show that, for $\theta \neq 2 n \pi$, where n is an integer,

$$
S=\frac{\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}\left(\mathrm{e}^{10 \mathrm{i} \theta}-1\right)}{2 \mathrm{i} \sin \left(\frac{1}{2} \theta\right)} .
$$

(b) State the value of S for $\theta=2 n \pi$, where n is an integer.
(ii) Hence show that, for $\theta \neq 2 n \pi$, where n is an integer,

$$
\begin{equation*}
\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots+\cos 10 \theta=\frac{\sin \left(\frac{21}{2} \theta\right)}{2 \sin \left(\frac{1}{2} \theta\right)}-\frac{1}{2} \tag{3}
\end{equation*}
$$

(iii) Hence show that $\theta=\frac{1}{11} \pi$ is a root of $\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots+\cos 10 \theta=0$ and find another root in the interval $0<\theta<\frac{1}{4} \pi$.

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & \cos \theta+\cos 2 \theta+\ldots+\cos 10 \theta=\operatorname{Re}\left(\frac{\mathrm{e}^{\frac{1}{2} \theta}\left(\mathrm{e}^{10 \mathrm{i} \theta}-1\right)}{2 \mathrm{i} \sin \left(\frac{1}{2} \theta\right)}\right) \\ & =\frac{\operatorname{Re}\left(-\mathrm{ie}^{\frac{1}{2} \theta}\left(\mathrm{e}^{10 \mathrm{i} \theta}-1\right)\right)}{2 \sin \left(\frac{1}{2} \theta\right)}=\frac{\operatorname{Re}\left(-\mathrm{i}^{\frac{21}{2} \mathrm{i} \theta}+\mathrm{ie}^{\frac{1}{2} \theta}\right)}{2 \sin \left(\frac{1}{2} \theta\right)} \end{aligned}$	M1 M1	Take real parts Manipulate expression	Must at least make genuine progress in sorting real part of numerator, or in converting numerator to trig terms.
		$\begin{aligned} & =\frac{\sin \left(\frac{21}{2} \theta\right)-\sin \left(\frac{1}{2} \theta\right)}{2 \sin \left(\frac{1}{2} \theta\right)} \\ & =\frac{\sin \left(\frac{21}{2} \theta\right)}{2 \sin \left(\frac{1}{2} \theta\right)}-\frac{1}{2} \end{aligned}$	A1 [3]	AG	
7	(iii)	$\cos \frac{1}{11} \pi+\cos \frac{2}{11} \pi+\ldots+\cos \frac{10}{11} \pi=\frac{\sin \left(\frac{21}{22} \pi\right)}{2 \sin \left(\frac{1}{22} \pi\right)}-\frac{1}{2}$ But $\quad \sin \frac{21}{22} \pi=\sin \left(\pi-\frac{21}{22} \pi\right)=\sin \frac{1}{22} \pi$ So RHS $=\frac{1}{2}-\frac{1}{2}=0$, so $\frac{1}{11} \pi$ is a root Using $\sin (2 \pi+x)=\sin x$ gives $2 \pi+\frac{1}{2} \theta=\frac{21}{2} \theta \Rightarrow \theta=\frac{1}{5} \pi$	M1 M1 A1 A1 [4]	AG	For second M1, must convince that solution is exact and not simply from calculator.

OCR JUNE 2007 FP3

7 (i) Show that $\left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) \equiv z^{2}-(2 \cos \phi) z+1$.
(ii) Write down the seven roots of the equation $z^{7}=1$ in the form $\mathrm{e}^{\mathrm{i} \theta}$ and show their positions in an Argand diagram.
(iii) Hence express $z^{7}-1$ as the product of one real linear factor and three real quadratic factors. [5]

$7 \text { (i) } \begin{aligned} \left(z-\mathrm{e}^{\mathrm{i} \phi}\right)\left(z-\mathrm{e}^{-\mathrm{i} \phi}\right) & \equiv z^{2}-(2) z \frac{\left(\mathrm{e}^{\mathrm{i} \phi}+\mathrm{e}^{-\mathrm{i} \phi}\right)}{(2)}+1 \\ & \equiv z^{2}-(2 \cos \phi) z+1 \end{aligned}$	B1 1	For correct justification AG
(ii) $z=\mathrm{e}^{\frac{2}{7} k \pi \mathrm{i}}$ for $k=0,1,2,3,4,5,6$ OR $0, \pm 1, \pm 2, \pm 3$	B1 B1 B1 B1 4	For general form $O R$ any one non-real root For other roots specified ($k=0$ may be seen in any form, eg $1, \mathrm{e}^{0}, \mathrm{e}^{2 \pi \mathrm{i}}$) For answers in form $\cos \theta+\mathrm{i} \sin \theta$ allow maximum B1 B0 For any 7 points equally spaced round unit circle (circumference need not be shown) For 1 point on $+{ }^{\mathrm{ve}}$ real axis, and other points in correct quadrants
$\begin{aligned} & \text { (iii) }\left(z^{7}-1=\right)(z-1)\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \\ & =\left(z-\mathrm{e}^{\frac{2}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-2}{7} \pi \mathrm{i}}\right) \times\left(z-\mathrm{e}^{\frac{4}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-4}{7} \pi \mathrm{i}}\right) \\ & \quad\left(z-\mathrm{e}^{\frac{6}{7} \pi \mathrm{i}}\right)\left(z-\mathrm{e}^{\frac{-6}{7} \pi \mathrm{i}}\right) \times \\ & \quad \times(z-1) \\ & =\left(z^{2}-\left(2 \cos \frac{2}{7} \pi\right) z+1\right) \times \\ & \left(z^{2}-\left(2 \cos \frac{4}{7} \pi\right) z+1\right) \times\left(z^{2}-\left(2 \cos \frac{6}{7} \pi\right) z+1\right) \times \\ & \times(z-1) \end{aligned}$	M1 M1 B1 A1 A1 5	For using linear factors from (ii), seen or implied For identifying at least one pair of complex conjugate factors For linear factor seen For any one quadratic factor seen For the other 2 quadratic factors and expression written as product of 4 factors

OCR JUNE 2010 FP3

3 In this question, w denotes the complex number $\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi$.
(i) Express w^{2}, w^{3} and w^{*} in polar form, with arguments in the interval $0 \leqslant \theta<2 \pi$.
(ii) The points in an Argand diagram which represent the numbers

$$
1, \quad 1+w, \quad 1+w+w^{2}, \quad 1+w+w^{2}+w^{3}, \quad 1+w+w^{2}+w^{3}+w^{4}
$$

are denoted by A, B, C, D, E respectively. Sketch the Argand diagram to show these points and join them in the order stated. (Your diagram need not be exactly to scale, but it should show the important features.)
(iii) Write down a polynomial equation of degree 5 which is satisfied by w.

3
(i) $w^{2}=\cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi$

$$
\begin{aligned}
w^{3} & =\cos \frac{6}{5} \pi+i \sin \frac{6}{5} \pi \\
w^{*} & =\cos \frac{2}{5} \pi-i \sin \frac{2}{5} \pi \\
& =\cos \frac{8}{5} \pi+i \sin \frac{8}{5} \pi
\end{aligned}
$$

(ii)

(iii) $z^{5}-1=0$ OR $z^{5}+z^{4}+z^{3}+z^{2}+z=0$

Allow cis $\frac{k}{5} \pi$ and $\mathrm{e}^{\frac{\mathrm{k}}{5} \pi \mathrm{i}}$ throughout
B1 For correct value
B1 For correct value
B1 For w^{*} seen or implied
B1 4 For correct value
SR For exponential form with i missing, award B0 first time, allow others

B1* For $1+w$ in approximately correct position
B1 For $A B \approx B C \approx C D$
(*dep)
B1 For $B C, C D$ equally inclined to Im axis
(*dep)
B1 4 For E at the origin
Allow points joined by arcs, or not joined Labels not essential
B1 1 For correct equation AEF (in any variable) Allow factorised forms using w, exp or trig

4 The cube roots of 1 are denoted by $1, \omega$ and ω^{2}, where the imaginary part of ω is positive.
(i) Show that $1+\omega+\omega^{2}=0$.

In the diagram, $A B C$ is an equilateral triangle, labelled anticlockwise. The points A, B and C represent the complex numbers z_{1}, z_{2} and z_{3} respectively.
(ii) State the geometrical effect of multiplication by ω and hence explain why $z_{1}-z_{3}=\omega\left(z_{3}-z_{2}\right)$.
(iii) Hence show that $z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$.

$$
4 \text { (i) } \begin{gathered}
\text { EITHER } 1+\omega+\omega^{2} \\
=\operatorname{sum} \text { of roots of }\left(z^{3}-1=0\right)=0
\end{gathered} \quad \begin{gathered}
\text { M1 } \quad 2
\end{gathered} \quad \text { For result shown by any correct method AG }
$$

(ii) Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3} \pi \circlearrowleft \quad$ B1
$z_{1}-z_{3}=\overrightarrow{C A}, \quad z_{3}-z_{2}=\overrightarrow{B C}$
$\overrightarrow{B C}$ rotates through $\frac{2}{3} \pi$ to direction of $\overrightarrow{C A}$
$\triangle A B C$ has $B C=C A$, hence result
(iii) (ii) $\Rightarrow z_{1}+\omega z_{2}-(1+\omega) z_{3}=0$
$1+\omega+\omega^{2}=0 \Rightarrow z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$

B1

B1

M1
A1 4 For stating equal magnitudes $\Rightarrow \mathbf{A G}$
M1 For using $1+\omega+\omega^{2}=0$ in (ii)
A1 2 For obtaining AG
For correct interpretation of \times by ω
(allow 120° and omission of, or error in, \circlearrowleft)
1 For identification of vectors soi (ignore direction errors)
For linking $B C$ and $C A$ by rotation of $\frac{2}{3} \pi O R \omega$

AQA JAN 2010 FP2

8 (a) (i) Show that $\omega=\mathrm{e}^{\frac{2 \pi i}{7}}$ is a root of the equation $z^{7}=1$.
(ii) Write down the five other non-real roots in terms of ω.
(b) Show that

$$
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0
$$

(c) Show that:
(i) $\omega^{2}+\omega^{5}=2 \cos \frac{4 \pi}{7} ;$
(3 marks)
(ii) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$.
(4 marks)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(\mathrm{e}^{\frac{2 \pi \mathrm{i}}{7}}\right)^{7}=\mathrm{e}^{2 \pi \mathrm{i}}=1$	B1	1	Or $z^{7}=\mathrm{e}^{2 k \pi \mathrm{i}} \quad z=\mathrm{e}^{\frac{2 k \pi \mathrm{i}}{7}} \quad k=1$
(ii)	Roots are $\omega^{2}, \omega^{3}, \omega^{4}, \omega^{5}, \omega^{6}$	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $e^{i \theta}$
(b)	Sum of roots considered $=0$	M1 A1	2	$\left\{\text { or } \sum_{r=0}^{6} \omega^{6}=\frac{\omega^{7}-1}{\omega-1}=0\right.$
(c)(i)	$\begin{aligned} \omega^{2}+\omega^{5} & =\mathrm{e}^{\frac{4 \pi \mathrm{i}}{7}}+\mathrm{e}^{\frac{10 \pi \mathrm{i}}{7}} \\ & =\mathrm{e}^{\frac{4 \pi \mathrm{i}}{7}}+\mathrm{e}^{\frac{-4 \pi \mathrm{i}}{7}} \end{aligned}$	M1 A1		$\text { Or } \cos \frac{4 \pi}{7}+i \sin \frac{4 \pi}{7}+\cos \frac{4 \pi}{7}-i \sin \frac{4 \pi}{7}$
	$=2 \cos \frac{4 \pi}{7}$	A1	3	AG
(ii)	$\omega+\omega^{6}=2 \cos \frac{2 \pi}{7} ; \quad \omega^{3}+\omega^{4}=2 \cos \frac{6 \pi}{7}$	B1,B1		Allow these marks if seen earlier in the solution
	Using part (b) Result	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	4	AG
	Total		12	

8 (a) Express in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$:
(i) $4(1+\mathrm{i} \sqrt{3})$;
(ii) $4(1-\mathrm{i} \sqrt{3})$.
(3 marks)
(b) The complex number z satisfies the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

Show that $z^{3}=4 \pm 4 \sqrt{3} \mathrm{i}$.
(2 marks)
(c) (i) Solve the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

(d) (i) Explain why the sum of the roots of the equation

$$
\left(z^{3}-4\right)^{2}=-48
$$

is zero.
(1 mark)
(ii) Deduce that $\cos \frac{\pi}{9}+\cos \frac{3 \pi}{9}+\cos \frac{5 \pi}{9}+\cos \frac{7 \pi}{9}=\frac{1}{2}$.
giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) Illustrate the roots on an Argand diagram.

AQA
 JAN 2011 FP2

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$4(1+i \sqrt{3})=8\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$	M1		for either $4(1+i \sqrt{3})$ or $4(1-i \sqrt{3})$ used
	$=8 \mathrm{e}^{\frac{\pi \mathrm{i}}{3}}$	A1		If either r or θ is incorrect but the same value in both (i) and (ii) allow A1 but for θ only if it is given as $\frac{\pi}{6}$
(ii)	$4(1-i \sqrt{3})=8 e^{\frac{-\pi i}{3}}$	A1	3	
(b)	$z^{3}-4= \pm \sqrt{-48}$	M1		taking square root
	$z^{3}=4 \pm 4 \sqrt{3} \mathrm{i}$	A1	2	AG

(c)(i)	$z=2 \mathrm{e}^{\frac{\frac{\pi \mathrm{i}}{3}+2 k \pi \mathrm{i}}{3}} \text { or } z=2 \mathrm{e}^{\frac{-\pi \mathrm{i}}{3}+2 k \pi \mathrm{i}} 33$	$\begin{aligned} & \text { B1F } \\ & \text { M1 } \end{aligned}$		for the $2 ; \mathrm{ft}$ incorrect 8 , but no decimals for either, PI
	$\begin{aligned} z & =2 \mathrm{e}^{\frac{\pi \mathrm{i}}{9}}, 2 \mathrm{e}^{\frac{7 \pi \mathrm{i}}{9}}, 2 \mathrm{e}^{\frac{5 \pi \mathrm{i}}{9}} \\ & =2 \mathrm{e}^{\frac{-\pi \mathrm{i}}{9}}, 2 \mathrm{e}^{\frac{-7 \pi \mathrm{i}}{9}}, 2 \mathrm{e}^{\frac{-5 \pi \mathrm{i}}{9}} \end{aligned}$	A3,2,1F	5	Allow A1 for any 2 roots not $+/-$ each other Allow A2 for any 3 roots not $+/-$ each other Allow A3 for all 6 correct roots Deduct A1 for each incorrect root in the interval; ignore roots outside the interval ft incorrect r
(ii)	 Radius 2	B1F		clearly indicated; ft incorrect r allow B1 for 3 correct points condone lines
	 Plotting roots	B2,1	3	
(d)(i)(ii)	Sum of roots $=0$ as coefficient of $z^{5}=0$	E1	1	OE
	Use of, say, $\frac{1}{2}\left(\mathrm{e}^{\frac{\pi \mathrm{i}}{9}}+\mathrm{e}^{\frac{-\pi \mathrm{i}}{9}}\right)=\cos \frac{\pi}{9}$	M1		
	$\cos \frac{3 \pi}{9}=\frac{1}{2}$ used	A1		
	$\cos \frac{\pi}{9}+\cos \frac{3 \pi}{9}+\cos \frac{5 \pi}{9}+\cos \frac{7 \pi}{9}=\frac{1}{2}$	A1	3	AG
	Total		17	

AQA JAN 2013 FP2

8 (a) Express $-4+4 \sqrt{3} \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$. (3 marks)
(b) (i) Solve the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$, giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) The roots of the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$ are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle $P Q R$, giving your answer in the form $k \sqrt{3}$, where k is an integer.
(c) By considering the roots of the equation $z^{3}=-4+4 \sqrt{3} i$, show that

$$
\begin{equation*}
\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0 \tag{4marks}
\end{equation*}
$$

Q	Solution	Marks	Total	Comments
8(a)	$r=8$	B1		
	$\tan ^{-1} \pm \frac{4 \sqrt{3}}{4}$ or $\pm \frac{\pi}{3}$ seen	M1		or $\frac{\pi}{6}$ marked as angle to Im axis with "vector" in second quadrant on Arg diag
	$\Rightarrow \theta=\frac{2 \pi}{3}$	A1	3	$-4+4 \sqrt{3} \mathrm{i}=8 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
(b)(i)	modulus of each root $=2$	B1 \checkmark		
		M1		use of De Moivre dividing argument by 3
	$\Rightarrow \theta=-\frac{4 \pi}{9}, \frac{2 \pi}{9}, \frac{8 \pi}{9}$	A2	4	A1 if 3 "correct" values not all in requested interval $2 e^{-i \frac{4 \pi}{9}}, 2 e^{i \frac{2 \pi}{9}}, 2 e^{i \frac{8 \pi}{9}}$
(ii)	$\text { Area }=3 \times \frac{1}{2} \times P O \times O R \times \sin \frac{2 \pi}{3}$	M1		Correct expression for area of triangle $P Q R$
	$=3 \times \frac{1}{2} \times 2 \times 2 \times \sin \frac{2 \pi}{3}$	A1		correct values of lengths in formula
	$=3 \sqrt{3}$	A1cso	3	

(c)	Sum of roots (of cubic) $=0$ Sum of 3 roots including Im terms $\begin{aligned} & 2\left(\cos \frac{(-) 4 \pi}{9}+\cos \frac{2 \pi}{9}+\cos \frac{8 \pi}{9}\right) \\ & \mathrm{e}^{-\mathrm{i} \frac{4 \pi}{9}}=\cos \frac{4 \pi}{9}-\mathrm{i} \sin \frac{4 \pi}{9} \text { seen earlier } \\ & \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0 \end{aligned}$	E1 M1 A1 A1cso	4	must be stated explicitly in form $r(\cos \theta+i \sin \theta)$ isolating real terms ; correct and with " 2 " or $\cos \frac{-4 \pi}{9}=\cos \frac{4 \pi}{9}$ explicitly stated to earn final A1 mark AG
	Total		14	

AQA JAN 2007 FP2

6 (a) Find the three roots of $z^{3}=1$, giving the non-real roots in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta \leqslant \pi$.
(b) Given that ω is one of the non-real roots of $z^{3}=1$, show that

$$
1+\omega+\omega^{2}=0
$$

(c) By using the result in part (b), or otherwise, show that:
(i) $\frac{\omega}{\omega+1}=-\frac{1}{\omega}$;
(ii) $\frac{\omega^{2}}{\omega^{2}+1}=-\omega$;
(1 mark)
(iii) $\left(\frac{\omega}{\omega+1}\right)^{k}+\left(\frac{\omega^{2}}{\omega^{2}+1}\right)^{k}=(-1)^{k} 2 \cos \frac{2}{3} k \pi$, where k is an integer.

MFP2 (cont)

Q Solution	Marks	Total	Comments	
$\mathbf{6 (a)}$	$1, \mathrm{e}^{ \pm \frac{2 \pi \mathrm{i}}{3}}$	M1A1	2	M1 for any method which would lead to the correct answers
(b)	Any correct method Shown for one root	Accept e or e e $^{0 \mathrm{i}}$ Also accept answers written down correctly		
M1	A1	2	AG	

AQA JAN 2010 Q8

8 (a) (i) Show that $\omega=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{7}}$ is a root of the equation $z^{7}=1$.
(ii) Write down the five other non-real roots in terms of ω.
(b) Show that

$$
1+\omega+\omega^{2}+\omega^{3}+\omega^{4}+\omega^{5}+\omega^{6}=0
$$

(c) Show that:
(i) $\omega^{2}+\omega^{5}=2 \cos \frac{4 \pi}{7}$;
(ii) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$.

AQA JAN 2013 FP2

8 (a) Express $-4+4 \sqrt{3} \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(b) (i) Solve the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$, giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(4 marks)
(ii) The roots of the equation $z^{3}=-4+4 \sqrt{3}$ i are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle $P Q R$, giving your answer in the form $k \sqrt{3}$, where k is an integer.
(c) By considering the roots of the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$, show that

$$
\begin{equation*}
\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0 \tag{4marks}
\end{equation*}
$$

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$r=8$	B1		
	$\tan ^{-1} \pm \frac{4 \sqrt{3}}{4}$ or $\pm \frac{\pi}{3}$ seen	M1		or $\frac{\pi}{6}$ marked as angle to Im axis with "vector" in second quadrant on Arg diag
	$\Rightarrow \theta=\frac{2 \pi}{3}$	A1	3	$-4+4 \sqrt{3} \mathrm{i}=8 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
(b)(i)	modulus of each root $=2$	B1 \checkmark		
		M1		use of De Moivre dividing argument by 3
	$\Rightarrow \theta=-\frac{4 \pi}{9}, \frac{2 \pi}{9}, \frac{8 \pi}{9}$	A2	4	A1 if 3 "correct" values not all in requested interval $2 \mathrm{e}^{\mathrm{i} \frac{4 \pi}{9}}, 2 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{9}}, 2 \mathrm{e}^{\mathrm{i} \frac{8 \pi}{9}}$
(ii)	$\text { Area }=3 \times \frac{1}{2} \times P O \times O R \times \sin \frac{2 \pi}{3}$	M1		Correct expression for area of triangle $P Q R$
	$=3 \times \frac{1}{2} \times 2 \times 2 \times \sin \frac{2 \pi}{3}$	A1		correct values of lengths in formula
	$=3 \sqrt{3}$	A1cso	3	

(c) Sum of roots (of cubic) $=0$ Sum of 3 roots including Im terms $2\left(\cos \frac{(-) 4 \pi}{9}+\cos \frac{2 \pi}{9}+\cos \frac{8 \pi}{9}\right)$ $\mathrm{e}^{-\mathrm{i} \frac{4 \pi}{9}}=\cos \frac{4 \pi}{9}-\mathrm{i} \sin \frac{4 \pi}{9}$ seen earlier $\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0$

	E1		must be stated explicitly M1
A1 form $r(\cos \theta+i \sin \theta)$			
r		isolating real terms ; correct and with "2" or $\cos \frac{-4 \pi}{9}=\cos \frac{4 \pi}{9}$ explicitly stated to earn final A1 mark	
Total		$\mathbf{1 4}$	

MEI JUNE 2007 FP2

2 (a) Use de Moivre's theorem to show that $\sin 5 \theta=5 \sin \theta-20 \sin ^{3} \theta+16 \sin ^{5} \theta$.
(b) (i) Find the cube roots of $-2+2 \mathrm{j}$ in the form $r \mathrm{e}^{\mathrm{j} \theta}$ where $r>0$ and $-\pi<\theta \leqslant \pi$.

These cube roots are represented by points A, B and C in the Argand diagram, with A in the first quadrant and $A B C$ going anticlockwise. The midpoint of $A B$ is M, and M represents the complex number w.
(ii) Draw an Argand diagram, showing the points A, B, C and M.
(iii) Find the modulus and argument of w.
(iv) Find w^{6} in the form $a+b \mathrm{j}$.

2 (a)	$\begin{aligned} & (\cos \theta+\mathrm{j} \sin \theta)^{5} \\ & \quad=c^{5}+5 \mathrm{j} c^{4} s-10 c^{3} s^{2}-10 \mathrm{j}^{2} s^{3}+5 c s^{4}+\mathrm{j} s^{5} \end{aligned}$ Equating imaginary parts $\begin{aligned} \sin 5 \theta & =5 c^{4} s-10 c^{2} s^{3}+s^{5} \\ & =5\left(1-s^{2}\right)^{2} s-10\left(1-s^{2}\right) s^{3}+s^{5} \\ & =5 s-10 s^{3}+5 s^{5}-10 s^{3}+10 s^{5}+s^{5} \\ & =5 \sin \theta-20 \sin ^{3} \theta+16 \sin ^{5} \theta \end{aligned}$	M1 M1 A1 M1 A1 ag	
(b)(i)	$\left\lvert\, \begin{aligned} & \|-2+2 \mathrm{j}\|=\sqrt{8}, \quad \arg (-2+2 \mathrm{j})=\frac{3}{4} \pi \\ & r=\sqrt{2} \\ & \theta=\frac{1}{4} \pi \\ & \theta=\frac{11}{12} \pi, \quad-\frac{5}{12} \pi \end{aligned}\right.$	B1B1 B1 ft B1 ft M1 A1 6	Accept 2.8; 2.4, 135° (Implies B1 for $\sqrt{8}$) One correct (Implies B1 for $\frac{3}{4} \pi$) Adding or subtracting $\frac{2}{3} \pi$ Accept $\theta=\frac{1}{4} \pi+\frac{2}{3} k \pi, k=0,1,-1$

MEI JAN 2009 FP2

2 (i) Write down the modulus and argument of the complex number $\mathrm{e}^{\mathrm{j} \pi / 3}$.
(ii) The triangle OAB in an Argand diagram is equilateral. O is the origin; A corresponds to the complex number $a=\sqrt{2}(1+\mathrm{j})$; B corresponds to the complex number b.

Show A and the two possible positions for B in a sketch. Express a in the form $r \mathrm{e}^{\mathrm{j} \theta}$. Find the two possibilities for b in the form $r \mathrm{e}^{\mathrm{j} \theta}$.
(iii) Given that $z_{1}=\sqrt{2} \mathrm{e}^{\mathrm{j} \pi / 3}$, show that $z_{1}^{6}=8$. Write down, in the form $r \mathrm{e}^{\mathrm{j} \theta}$, the other five complex numbers z such that $z^{6}=8$. Sketch all six complex numbers in a new Argand diagram.

Let $w=z_{1} \mathrm{e}^{-\mathrm{j} \pi / 12}$.
(iv) Find w in the form $x+\mathrm{j} y$, and mark this complex number on your Argand diagram.
(v) Find w^{6}, expressing your answer in as simple a form as possible.

2 (i)	Modulus $=1$ Argument $=\frac{\pi}{3}$	B1 B1	Must be separate Accept $60^{\circ}, 1.05^{\text {c }}$
(ii)	2		

(iii)	$\begin{aligned} & z_{1}^{6}=\left(\sqrt{2} e^{\frac{j \pi}{3}}\right)^{6}=(\sqrt{2})^{6} e^{2 j \pi} \\ & =8 \end{aligned}$ Others are $r e^{j \theta}$ where $r=\sqrt{2}$ and $\theta=-\frac{2 \pi}{3},-\frac{\pi}{3}, 0, \frac{2 \pi}{3}, \pi$	M1 A1 (ag) M1 A1 G1 G1	$(\sqrt{2})^{6}=8 \text { or } \frac{\pi}{3} \times 6=2 \pi \text { seen }$ www "Add" $\frac{\pi}{3}$ to argument more than once Correct constant r and five values of θ. Accept θ in $[0,2 \pi]$ or in degrees 6 points on vertices of regular hexagon Correctly positioned (2 roots on real axis). Ignore scales SC 1 if G0 and 5 points correctly plotted
(iv)	$\begin{aligned} & w=z_{1} e^{-\frac{j \pi}{12}}=\sqrt{2} e^{\frac{j \pi}{3}} e^{-\frac{j \pi}{12}}=\sqrt{2} e^{\frac{j \pi}{4}} \\ & =\sqrt{2}\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right) \\ & =1+j \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { G1 } & \\ \hline \end{array}$	$\arg w=\frac{\pi}{3}-\frac{\pi}{12}$ Or B2 Same modulus as z_{1}
(v)	$\begin{aligned} & w^{6}=\left(\sqrt{2} e^{\frac{j \pi}{4}}\right)^{6}=8 e^{\frac{3 j \pi}{2}} \\ & =-8 j \end{aligned}$	M1 A1 2	Or $z_{1}{ }^{6} e^{-\frac{j \pi}{2}}=8 e^{-\frac{j \pi}{2}}$ cao. Evaluated

MEI JUNE 2010 FP2

2 (a) Given that $z=\cos \theta+\mathrm{j} \sin \theta$, express $z^{n}+\frac{1}{z^{n}}$ and $z^{n}-\frac{1}{z^{n}}$ in simplified trigonometric form.
Hence find the constants A, B, C in the identity

$$
\sin ^{5} \theta \equiv A \sin \theta+B \sin 3 \theta+C \sin 5 \theta .
$$

(b) (i) Find the 4th roots of -9 j in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $0<\theta<2 \pi$. Illustrate the roots on an Argand diagram.
(ii) Let the points representing these roots, taken in order of increasing θ, be $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$. The mid-points of the sides of PQRS represent the 4th roots of a complex number w. Find the modulus and argument of w. Mark the point representing w on your Argand diagram. [5]

Mark Scheme

$$
2 \text { (a) } \begin{array}{ll|l|l|}
\hline z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, z^{n}-\frac{1}{z^{n}}=2 j \sin n \theta & \text { B1 } & \text { Both } \\
\left(z-\frac{1}{z}\right)^{5}=z^{5}-5 z^{3}+10 z-\frac{10}{z}+\frac{5}{z^{3}}-\frac{1}{z^{5}} & \text { M1 } & \text { Expanding }\left(z-\frac{1}{z}\right)^{5} \\
=z^{5}-\frac{1}{z^{5}}-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right) & \text { M1 } & \begin{array}{l}
\text { Introducing sines (and possibly cosines) } \\
\text { of multiple angles } \\
\text { RHS }
\end{array} \\
\Rightarrow 32 j \sin ^{5} \theta=2 j \sin 5 \theta-10 j \sin 3 \theta+20 j \sin \theta & \text { A1 } & \text { A1ft } & \text { Division by 32(j) } \\
\Rightarrow \begin{array}{ll}
\sin ^{5} \theta=\frac{1}{16} \sin 5 \theta-\frac{5}{16} \sin 3 \theta+\frac{5}{8} \sin \theta \\
A=\frac{5}{8}, B=-\frac{5}{16}, C=\frac{1}{16} & 5
\end{array} \\
\hline
\end{array}
$$

2 (a) Use de Moivre's theorem to find expressions for $\sin 5 \theta$ and $\cos 5 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
Hence show that, if $t=\tan \theta$, then

$$
\begin{equation*}
\tan 5 \theta=\frac{t\left(t^{4}-10 t^{2}+5\right)}{5 t^{4}-10 t^{2}+1} \tag{6}
\end{equation*}
$$

(b) (i) Find the 5th roots of $-4 \sqrt{2}$ in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $0 \leqslant \theta<2 \pi$.

These 5 th roots are represented in the Argand diagram, in order of increasing θ, by the points A , B, C, D, E.
(ii) Draw the Argand diagram, making clear which point is which.

The mid-point of AB is the point P which represents the complex number w.
(iii) Find, in exact form, the modulus and argument of w.
(iv) w is an nth root of a real number a, where n is a positive integer. State the least possible value of n and find the corresponding value of a.

2 (a)	$\begin{aligned} & \text { cos } 5 \theta+j \sin 5 \theta=(\cos \theta+j \sin \theta)^{5} \\ & \quad=c^{5}+5 c^{4} j s-10 c^{3} s^{2}-10 c^{2} j s^{3}+5 c s^{4}+j s^{5} \\ & \Rightarrow \cos 5 \theta=c^{5}-10 c^{3} s^{2}+5 c s^{4} \\ & \quad \sin 5 \theta=5 c^{4} s-10 c^{2} s^{3}+s^{5} \\ & \Rightarrow \tan 5 \theta=\frac{5 c^{4} s-10 c^{2} s^{3}+s^{5}}{c^{5}-10 c^{3} s^{2}+5 c s^{4}} \\ & \quad=\frac{5 t-10 t^{3}+t^{5}}{1-10 t^{2}+5 t^{4}} \\ & \quad=\frac{\left.t t^{4}-10 t^{2}+5\right)}{5 t^{4}-10 t^{2}+1} \end{aligned}$	M1 M1 A1 A1 M1 A1 (ag)	Expanding Separating real and imaginary parts. Dependent on first M1 Alternative: $16 c^{5}-20 c^{3}+5 c$ Alternative: $16 s^{5}-20 s^{3}+5 s$ Using $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and simplifying
(b)(i)	$\begin{aligned} & \arg (-4 \sqrt{2})=\pi \\ & \Rightarrow \text { fifth roots have } r=\sqrt{2} \\ & \text { and } \theta=\frac{\pi}{5} \\ & \Rightarrow z=\sqrt{2} e^{\frac{1}{5} j \pi}, \sqrt{2} e^{\frac{3}{5} j \pi}, \sqrt{2} e^{j \pi}, \sqrt{2} e^{\frac{7}{5} j \pi}, \sqrt{2} e^{\frac{9}{5} j \pi} \end{aligned}$	B1 B1 M1 A1	No credit for arguments in degrees Adding (or subtracting) $\frac{2 \pi}{5}$ All correct. Allow $-\pi \leq \theta<\pi$

(ii)		G1 G1	2	Points at vertices of "regular" pentagon, with one on negative real axis Points correctly labelled
(iii)	$\begin{aligned} & \arg (w)=\frac{1}{2}\left(\frac{\pi}{5}+\frac{3 \pi}{5}\right)=\frac{2 \pi}{5} \\ & \|w\|=\sqrt{2} \cos \frac{\pi}{5} \end{aligned}$	B1 M1 A1ft	3	Attempting to find length F.t. (positive) r from (i)
(iv)	$w=\sqrt{2} \cos \frac{\pi}{5} e^{\frac{2}{5} \pi j} \Rightarrow w^{n}=\left(\sqrt{2} \cos \frac{\pi}{5}\right)^{n} e^{\frac{2}{5} \pi n j}$ which is real if $\sin \frac{2 \pi n}{5}=0 \Rightarrow n=5$ $\begin{aligned} & \left\|w^{5}\right\|=\left(\sqrt{2} \cos \frac{\pi}{5}\right)^{5} \\ & \Rightarrow a=2^{\frac{5}{2}} \cos ^{5} \frac{\pi}{5} \end{aligned}$	B1 M1 A1	3	Attempting the nth power of his modulus in (iii), or attempting the modulus of the nth power here Accept 1.96 or better

(a) (i) Show that

$$
1+\mathrm{e}^{\mathrm{j} 2 \theta}=2 \cos \theta(\cos \theta+\mathrm{j} \sin \theta) .
$$

(ii) The series C and S are defined as follows.

$$
\begin{aligned}
& C=1+\binom{n}{1} \cos 2 \theta+\binom{n}{2} \cos 4 \theta+\ldots+\cos 2 n \theta \\
& S=\quad\binom{n}{1} \sin 2 \theta+\binom{n}{2} \sin 4 \theta+\ldots+\sin 2 n \theta
\end{aligned}
$$

By considering $C+\mathrm{j} S$, show that

$$
C=2^{n} \cos ^{n} \theta \cos n \theta
$$

and find a corresponding expression for S.
(b) (i) Express $\mathrm{e}^{\mathrm{j} 2 \pi / 3}$ in the form $x+\mathrm{j} y$, where the real numbers x and y should be given exactly.

Question			Answer	Marks	Guidance	
2	(a)	(iii)	$\begin{aligned} & \cos ^{4} \theta=\frac{3}{8}+\frac{1}{2}\left(2 \cos ^{2} \theta-1\right)+\frac{1}{8} \cos 4 \theta \\ & \Rightarrow \cos ^{4} \theta=\cos ^{2} \theta-\frac{1}{8}+\frac{1}{8} \cos 4 \theta \\ & \Rightarrow \cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 \end{aligned}$	M1 A1 [2]	Using (ii), obtaining $\cos 4 \theta$ and expressing $\cos 2 \theta$ in terms of $\cos ^{2} \theta$ c.a.o.	Condone $\cos 2 \theta= \pm 1 \pm 2 \cos ^{2} \theta$
2	(b)	(i)	$\begin{aligned} & z=4 e^{\frac{j \pi}{3}} \text { and } w^{2}=z: \text { let } w=r e^{j \theta} \Rightarrow w^{2}=r^{2} e^{2 j \theta} \\ & \Rightarrow r^{2}=4 \Rightarrow r=2 \end{aligned}$ and $\theta=\frac{\pi}{6}, \frac{7 \pi}{6}$	B1 B1B1 B1 B1 [5]	$\text { Or }-\frac{5 \pi}{6}$ Roots with approx. equal moduli and approx. correct argument Dependent on first B1 z in correct position	Condone $r= \pm 2$ Award B2 for $\pi\left(k+\frac{1}{6}\right)$ Ignore annotations and scales $\leq \pi / 4$ Modulus and argument bigger

B1		Ignore other larger values
M1	$\cos \frac{\pi n}{3}=0$ or $\frac{\pi n}{3}=\frac{\pi}{2} \ldots$	
A1(ag)	An argument which covers the positive and negative im. axis	
M1	Attempting their w^{3} in any form	Must deal with mod and arg
A1	$8 \mathrm{j},-8 \mathrm{j}$	
$[5]$		

