

Mr. Chan's 13FM Complex Numbers Questions by Topic Pack

https://www.youtube.com/watch?v=MPIcHp

Ts al

Core Pure Book 2 A Level Further Maths - Exercise 1E Q6

https://youtu.be/6P0HtEZ9fdE

Review Exercise 1 Q11a

https://youtu.be/kyVNVVw lao

13Fm Core Pure - Roots of Complex Numbers Loci - A Level Further Maths - Review Exercise 1 Q11b

66 views • 9 Mar 2020

SoHokMaths By A. Chan

ANALYTICS

EDIT VIDEO

https://www.youtube.com/watch?v=Iirsoc5

Edexcel IAL F2 June 17 (Y13 Further Maths)

312 views • 11 Nov 2020

EDIT VIDEO

https://www.youtube.com/watch?v=YkgkTh

dzX-8

IMAGINE. (Ultimate Mix, 2020) - John Lennon & The Plastic ...

https://www.youtube.com > watch

Lyrics

Imagine there's no heaven

It's easy if you try

No hell below us

Above us only sky... More

There are three big style of A2 complex numbers questions:

- 1) General Trigonometry/Binomial
- 2) C+iS
- 3) Geometric Problems (nth Roots)
- +MEI uses j instead i
- +I have included the full question so other "parts" of the question may be "cross topic" links
- +Questions from Old Spec MEI FP2, OCR FP3, AQA FP2, IAL Edexcel F2, Edexcel FP2
- +Not all questions are included

General Trigonometry/Binomial

- 4. Edexcel IAL June 2015 FP2
- +22. AQA JAN 2006 FP2
- +37. AQA JUNE 2009 FP2

- +8. Edexcel IAL June 2016 F2
- +25. AQA JUNE 2006 FP2
- +39. AQA JUNE 2011 FP2
- +12. Edexcel June 2011 +28. AQA JAN 2007 FP2
- FP2
- +41. Aga June 2012 FP2
- +15. Edexcel June 2013 +31. AQA JAN 2008 FP2 FP2
- +44. AQA JUNE 2013 FP2

- +19. MEI JUNE 2006 FP2
- +34. AQA JUNE 2008 FP2

C+IS

- 48. MEI Jan 2006
 - FP2
- +51. MEI Jan 2007
 - FP2
- +54. MEI Jan 2008
 - FP2
- +57. MEI JUNE 2009 +69. OCR JAN 2008

FP2

- +60. MEI JAN 2010
 - FP2
- +63. MEI JAN 2012
 - FP2
- +66. MEI JUNE 2012
 - FP2

FP3

- +71. Ocr June 2010
 - FP3
- +73. OCR JAN 2013

FP3

Geometric Problems (nth Roots)

- 477. OCR JUNE 2007 FP3
- +79. OCR JUNE 2010 FP3
- +81. OCR JAN 2011 FP3
- +83. AQA JAN 2010 FP2
- +85. AQA JAN 2011 FP2

- +88. AQA JAN 2013 FP2
- +91. AQA JAN 2007 FP2
- +94. AQA JAN 2010 Q8 FP2
- +96. AQA JAN 2013 FP2
- +99. MEI JUNE 2007 FP2
- +102. MEI JAN 2009

- FP2
- +105. MEI JUNE 2010 FP2
- +108. MEI JUNE 2011
- +111. MEI JUNE 2012 FP2

(a) Show that

$$\left(z + \frac{1}{z}\right)^{3} \left(z - \frac{1}{z}\right)^{3} = z^{6} - \frac{1}{z^{6}} - k\left(z^{2} - \frac{1}{z^{2}}\right)$$

where k is a constant to be found.

Given that $z = \cos \theta + i \sin \theta$, where θ is real,

(b) show that

(i)
$$z^n + \frac{1}{z^n} = 2 \cos n\theta$$

(ii)
$$z^n - \frac{1}{z^n} = 2i \sin n\theta$$

(c) Hence show that

$$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta)$$

(d) Find the exact value of

$$\int_0^{\frac{\pi}{8}} \cos^3 \theta \sin^3 \theta d\theta$$

Edexcel IAL June 2015 FP2

(3)

(4)

Imagine having general
Trigonometry/
Binomial in

Trigonometry/
Binomial in
your complex
HOME...

Question Number	Scheme	Notes	Marks
(a)	$\left(z+\frac{1}{z}\right)^3 \left(z-\frac{1}{z}\right)^3 = \left(z^2-\frac{1}{z^2}\right)^3$		
	$=z^{6}-3z^{2}+\frac{3}{z^{2}}-z^{-6}$	M1: Attempt to expand	261 4 1
	$= z^{2} - 3z^{2} + \frac{1}{z^{2}} - z^{2}$	A1: Correct expansion	M1A1
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct answer with no errors seen	A1
			(3)
(a) ALT	$\left(z + \frac{1}{z}\right)^3 = z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}, \left(z\right)$	$\left(-\frac{1}{z}\right)^{3} = z^{3} - 3z + \frac{3}{z} - \frac{1}{z^{3}}$	M1A1
	M1: Attempt to expand both cubic br	to expand both cubic brackets A1: Correct expansions	
	$=z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)$	Correct answer with no errors	A1
			(3)
			(3)

			ı	(2)
(b)(i)(ii)	$z^n = \cos n\theta + i \sin n\theta$	Correct application of de Moivre	B1	
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \pm \cos n\theta \pm \sin n\theta$ but must be different from their z^n	Attempt z ⁻ⁿ	M1	
	$z^{n} + \frac{1}{z^{n}} = 2\cos n\theta^{*}, \ z^{n} - \frac{1}{z^{n}} = 2i\sin n\theta^{*}$	$z^{-n} = \cos n\theta - i \sin n\theta $ must be seen	A1*	
				(3)
(c)	$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = \left(2\cos\theta\right)^3 \left(2i\sin\theta\right)^3$		B1	
	$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow through their k in place of 3	B1ft	
	$-64i\sin^3\theta\cos^3\theta = 2i\sin6\theta - 6i\sin2\theta$	Equating right hand sides and simplifying $2^3 \times (2i)^3$ (B mark needed for each side to gain M mark)	M1	
	$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$		A1cso	
				(4)

/ / / /

	(c)	$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = \left(2\cos\theta\right)^3 \left(2i\sin\theta\right)^3$		B1
/		$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow through their k in place of 3	B1ft
/		$-64i\sin^3\theta\cos^3\theta = 2i\sin6\theta - 6i\sin2\theta$	Equating right hand sides and simplifying $2^3 \times (2i)^3$ (B mark needed for each side to gain M mark)	M1
		$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$		Alcso
				(4)
ſ	(4)			T T

(d)	$\int_0^{\frac{\pi}{8}} \cos^3 \theta \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin 2\theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin \theta - 1)^{\frac{\pi}{8}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{8}} \frac{1}{32} (3\sin \theta - 1)^{\frac{\pi}{$		
		M1: $p\cos 2\theta + q\cos 6\theta$	
	$=\frac{1}{32}\left[-\frac{3}{2}\cos 2\theta + \frac{1}{6}\cos 6\theta\right]^{\frac{2}{8}}$	A1: Correct integration	M1A1
	32 2 6 6	Differentiation scores	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		M0A0	
		dM1: Correct use of	
	. [(limits – lower limit to	
	$= \frac{1}{32} \left[\left(-\frac{3}{2\sqrt{2}} - \frac{1}{6\sqrt{2}} \right) - \left(-\frac{3}{2} + \frac{1}{6} \right) \right] = \frac{1}{32} \left(\frac{4}{3} - \frac{5\sqrt{2}}{6} \right)$	have non-zero result.	dM1A1
	$32[(2\sqrt{2} 6\sqrt{2}) (2^{\circ}6)] 32[3 6]$	Dep on previous M mark	divitAt
		A1: Cao (oe) but must be	
		exact	
			(4
			Total 14

Edexcel IAL June 2016 F2

Imagine having general
Trigonometry/
Binomial in your complex
HOME...

(a) Use de Moivre's theorem to show that

$$\cos^5\theta \equiv p\cos 5\theta + q\cos 3\theta + r\cos \theta$$

where p, q and r are rational numbers to be found.

(b) Hence, showing all your working, find the exact value of

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos^5 \theta \ d\theta$$

(6)

(4)

(Total for question = 10 marks)

WAY 1
$$\begin{pmatrix} (a) \\ (z+\frac{1}{z})^5 = z^5 + 5z^3 + 10z + \frac{10}{z} + \frac{5}{z^3} + \frac{1}{z^5} & \text{M1: Attempt to expand } (z\pm\frac{1}{z})^5 \\ \text{A1: Correct expansion with correct powers of } z. \\ z = \cos\theta + i\sin\theta \Rightarrow z + \frac{1}{z} = 2\cos\theta & \text{May be implied} & \text{B1} \\ = z^5 + \frac{1}{z^5} + 5\left(z^3 + \frac{1}{z^3}\right) + 10\left(z + \frac{1}{z}\right) = 2\cos 5\theta + 10\cos 3\theta + 20\cos\theta \\ \text{Uses at least one of } z^5 + \frac{1}{z^5} = 2\cos 5\theta \text{ or } z^3 + \frac{1}{z^3} = 2\cos 3\theta \\ (z+\frac{1}{z})^5 = 32\cos^5\theta & \text{B1} \\ \cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos\theta & \text{Correct expression} & \text{A1} \\ \end{pmatrix}$$

$$\frac{\text{WAY 2 (Using } e^{i\theta})}{\text{WAY 2 (Using } e^{i\theta})}$$

A1: Correct expansion $ 2\cos\theta = e^{i\theta} + e^{-i\theta} \qquad \text{May be implied} \qquad \text{B1} $ $ = e^{5i\theta} + e^{-5i\theta} + 5\left(e^{3i\theta} + e^{-3i\theta}\right) + 10\left(e^{i\theta} + e^{-i\theta}\right) = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta \qquad \text{M1} $ Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$ $ \left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta \qquad \text{B1} $	WAY 2 (Using eit	[*])	
$2\cos\theta = e^{i\theta} + e^{-i\theta} \qquad \text{May be implied} \qquad B1$ $= e^{5i\theta} + e^{-5i\theta} + 5\left(e^{3i\theta} + e^{-3i\theta}\right) + 10\left(e^{i\theta} + e^{-i\theta}\right) = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta \qquad M1$ Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$ $\left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta \qquad B1$	$\left(e^{i\theta} + e^{-i\theta}\right)^5 = e^{5i\theta} + 5e^{3i\theta} + 10e^{i\theta} + 10e^{-i\theta} + 5e^{-3i\theta} + e^{-5i\theta}$	$\left(e^{i\theta}\pm e^{-i\theta}\right)^{5}$	M1A1
$= e^{5i\theta} + e^{-5i\theta} + 5\left(e^{3i\theta} + e^{-3i\theta}\right) + 10\left(e^{i\theta} + e^{-i\theta}\right) = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$ $\left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta$ B1	20 siθ siθ	•	D1
Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$ $\left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta$ B1			DI
Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$ $\left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta$ B1	$= e^{5i\theta} + e^{-5i\theta} + 5(e^{3i\theta} + e^{-3i\theta}) + 10(e^{i\theta} + e^{-i\theta}) = 2$	$2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	3.61
	Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or	$e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$	MI
$\cos^5 \theta = \frac{1}{2} \cos 5\theta + \frac{5}{2} \cos 3\theta + \frac{5}{2} \cos \theta$ Correct expression $\Delta 1$	$\left(e^{i\theta} + e^{-i\theta}\right)^5 = 32\cos^5\theta$		B1
16 16 8 Collect expression	$\cos^5 \theta = \frac{1}{16} \cos 5\theta + \frac{5}{16} \cos 3\theta + \frac{5}{8} \cos \theta$	Correct expression	A1

WAY 3 (Using De Moivre on $\cos 5\theta$ and identity for $\cos 3\theta$)			
$(\cos\theta + i\sin\theta)^5 = c^5 + 5ic^4s + 10c^3i^2s^2$ M1: Attempts to expand. NB may only A1: Correct real terms (may include i's) (Igno	M1A1		
$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	Correct real terms with no i's	B1	
$= \cos^5 \theta - 10\cos^3 \theta \left(1 - \cos^2 \theta\right) + 5\cos \theta \left(1 - \cos^2 \theta\right)^2$	$-\cos^2\theta$) ² Uses $\sin^2\theta = 1 - \cos^2\theta$ to eliminate $\sin\theta$		
$16\cos^5\theta = \cos 5\theta + 20\cos^3\theta - 5\cos\theta$			
$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$	Correct identity for $\cos 3\theta$	B1	
$16\cos^5\theta = \cos 5\theta + 5\cos 3\theta + 10\cos \theta$			
$\cos^5 \theta = \frac{1}{16} \cos 5\theta + \frac{5}{16} \cos 3\theta + \frac{5}{8} \cos \theta$	Correct expression	A1	
		(6)	

(b)	$\int \left(\frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta\right) d\theta = \frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta$ M1: Attempt to integrate – Evidence of $\cos n\theta \to \pm \frac{1}{2}\sin n\theta$ where	•	M1A1ft
	WIT. Attempt to integrate – Evidence of $\cos n\theta \to \pm -\sin n\theta$ with	lete $n = 3$ of 3	
	Alft: Correct integration (ft their p, q, r)		
	$\left[\frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \left(\frac{1}{80}\sin \frac{5\pi}{3} + \frac{5}{48}\sin \pi + \frac{5}{8}\sin \frac{\pi}{3}\right) - \left(\frac{1}{80}\sin \frac{5\pi}{6}\right)$	$+\frac{5}{48}\sin\frac{\pi}{2}+\frac{5}{8}\sin\frac{\pi}{6}$	
	Substitutes the given limits into a changed function and subtracts the	ne right way round.	M1
	There should be evidence of the substitution of $\frac{\pi}{3}$ and $\frac{\pi}{6}$ into their	changed function	IVII
	for at least 2 of their terms and subtraction. If there is no evidence the answer is incorrect, score M0 here.	of substitution and	
	Allow exact equiv	alents e.g.	
	$= \frac{49\sqrt{3}}{160} - \frac{203}{480}$ $= \frac{1}{16} \left(4.9\sqrt{3} - \frac{203}{30} \right)$		A1
	If they use the letters p , q and r or their values of p , q and r .	even from no	
	working, the M marks are available in (b) but not the		
			(4)
			Total 10

Edexcel June 2011 FP2

Imagine having general
Trigonometry/
Binomial in your complex
HOME...

(a) Use de Moivre's theorem to show that

$$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta$$

Hence, given also that $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$,

(b) find all the solutions of

$$\sin 5\theta = 5\sin 3\theta$$
,

in the interval $0 \le \theta < 2\pi$. Give your answers to 3 decimal places.

(6)

(Total 11 marks)

(5)

Question Number	Scheme	Marks
(a)	$\sin 5\theta = \operatorname{Im}(\cos \theta + i \sin \theta)^5$	B1
	$5\cos^4\theta(i\sin\theta)+10\cos^2\theta(i^3\sin^3\theta)+i^5\sin^5\theta$	M1
	$= i(5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta)$	A1
	$\left(\operatorname{Im}(\cos\theta + i\sin\theta)^{5}\right) = 5\sin\theta(1 - \sin^{2}\theta)^{2} - 10\sin^{3}\theta(1 - \sin^{2}\theta) + \sin^{5}\theta$	M1
	$\sin 5\theta = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta (*)$	A1cso
		(5)

(b)	$16\sin^5\theta - 20\sin^3\theta + 5\sin\theta = 5(3\sin\theta - 4\sin^3\theta)$	M1	
	$16\sin^5\theta - 10\sin\theta = 0$	M1	
	$\sin^4 \theta = \frac{5}{8} \qquad \theta = 1.095$	A1	
	Inclusion of solutions from $\sin \theta = -\sqrt[4]{\frac{5}{8}}$	M1	
	Other solutions: $\theta = 2.046, 4.237, 5.188$	A1	
	$\sin \theta = 0 \Rightarrow \theta = 0, \ \theta = \pi \ (3.142)$	B1	
		e e	
(a)	Award B if solution considers Imaginary parts and equates to $\sin 5\theta$		
	1st M1 for correct attempt at expansion and collection of imaginary		
	parts		
(b)	2 nd M1 for substitution powers of cos θ 1 st M for substituting correct expressions		
(b)	2 nd M for attempting to form equation		
	Imply 3 rd M if 4.237 or 5.188 seen. Award for their negative root.		
	Ignore 2π but 2^{nd} A0 if other extra solutions given.		

Edexcel June 2013 FP2

The complex number $z = e^{i\theta}$, where θ is real.

(a) Use de Moivre's theorem to show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

where *n* is a positive integer.

(b) Show that

$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$

(c) Hence find all the solutions of

$$\cos 5\theta + 5\cos 3\theta + 12\cos \theta = 0$$

in the interval $0 \le \theta < 2\pi$

Imagine having general Trigonometry Binomial in your complex

(4)HOME... (Total 11 marks)

(2)

(5)

1				
	(a)	$z^n + z^{-n} = e^{in\theta} + e^{-in\theta}$		
,		$=\cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$		
		$=2\cos n\theta$ *	M1A1	
				(2)

Notes for Question

Question a

M1 for using de Moivre's theorem to show that either $z^n = \cos n\theta + i \sin n\theta$ or $z^{-n} = \cos n\theta - i \sin n\theta$

A1 for completing to the given result $z^n + z^n = 2\cos n\theta$ *

M1 for replacing $(z^5 + z^{-5})$, $(z^3 + z^{-3})$, $(z + z^{-1})$ with $2\cos 5\theta$, $2\cos 3\theta$, $2\cos \theta$ and equating their revised expression to their result for $(z + z^{-1})^5 = 32\cos^5\theta$

A1cso for
$$\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta)$$
 *

(c)
$$\cos 5\theta + 5\cos 3\theta + 10\cos \theta = -2\cos \theta$$
 M1

 $16\cos^5\theta = -2\cos \theta$ A1

 $2\cos \theta \left(8\cos^4\theta + 1\right) = 0$
 $8\cos^4\theta + 1 = 0$ no solution

 $\cos \theta = 0$

M1

 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$

Question c

M1

for attempting re-arrange the equation with one side matching the bracket in the result in (b) Question states "hence", so no other method is allowed.

A1 for using the result in (b) to obtain $16\cos^5\theta = -2\cos\theta$ oe

B1 for stating that there is no solution for $8\cos^4\theta + 1 = 0$ oe eg $8\cos^4\theta + 1 \neq 0$ $8\cos^4\theta + 1 > 0$ or "ignore" but $\cos\theta = \sqrt[4]{-\frac{1}{8}}$ without comment gets B0

A1 for $\theta = \frac{\pi}{2}$ and $\frac{3\pi}{2}$ and no more in the range. Must be in radians, can be in decimals (1.57...,

4.71... 3 sf or better)

[6]

MEI JUNE 2006 FP2

- 2 (a) (i) Given that $z = \cos \theta + j \sin \theta$, express $z^n + \frac{1}{z^n}$ and $z^n \frac{1}{z^n}$ in simplified trigonometric form. [2]
 - (ii) By considering $\left(z \frac{1}{z}\right)^4 \left(z + \frac{1}{z}\right)^2$, find A, B, C and D such that $\sin^4\theta \cos^2\theta = A\cos 6\theta + B\cos 4\theta + C\cos 2\theta + D.$ [6]
 - (b) (i) Find the modulus and argument of 4 + 4j. [2]
 - (ii) Find the fifth roots of 4 + 4j in the form $re^{j\theta}$, where r > 0 and $-\pi < \theta \le \pi$. Illustrate these fifth roots on an Argand diagram.
 - (iii) Find integers p and q such that $(p+qj)^5 = 4+4j$. [2]

2 (a)(i)	$z^n + \frac{1}{z^n} = 2\cos n\theta$, $z^n - \frac{1}{z^n} = 2j\sin n\theta$	B1B1 2	
(ii)	$\left(z - \frac{1}{z}\right)^4 \left(z + \frac{1}{z}\right)^2 = 64\sin^4\theta\cos^2\theta$	B1	
	$= z^6 - 2z^4 - z^2 + 4 - \frac{1}{z^2} - \frac{2}{z^4} + \frac{1}{z^6}$	M1 A1	Expansion $z^6 + \dots + z^{-6}$
		M1	Using $z^n + \frac{1}{z^n} = 2\cos n\theta$ with
			n = 2, 4 or 6. Allow M1 if used
	$=2\cos 6\theta - 4\cos 4\theta - 2\cos 2\theta + 4$	A1 ft	in partial expansion, or if 2 omitted, etc
	$\sin^4 \theta \cos^2 \theta = \frac{1}{32} \cos 6\theta - \frac{1}{16} \cos 4\theta - \frac{1}{32} \cos 2\theta + \frac{1}{16}$	A1	
	$(A = \frac{1}{32}, B = -\frac{1}{16}, C = -\frac{1}{32}, D = \frac{1}{16})$	6	
(b)(i)	$ 4+4j = \sqrt{32}$, $arg(4+4j) = \frac{1}{4}\pi$	B1B1	Accept 5.7; 0.79, 45°
(~/(.)		_	

AQA JAN 2006 FP2

Imagine having general
Trigonometry/Binomial in
your complex HOME...

- 6 It is given that $z = e^{i\theta}$.
 - (a) (i) Show that

$$z + \frac{1}{z} = 2\cos\theta$$

(2 marks)

(ii) Find a similar expression for

$$z^2 + \frac{1}{z^2}$$

(2 marks)

(iii) Hence show that

$$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2} = 4\cos^2\theta - 2\cos\theta$$

(3 marks)

(b) Hence solve the quartic equation

$$z^4 - z^3 + 2z^2 - z + 1 = 0$$

giving the roots in the form a + ib.

(5 marks)

MFP2 (cont)

1	VIFP2 (cont)				
1	Q	Solution	Marks	Total	Comments
	6(a)(i)	$z + \frac{1}{z} = \cos\theta + i\sin\theta +$			Or $z + \frac{1}{z} = e^{i\theta} + e^{-i\theta}$
		$\cos(-\theta) + i\sin(-\theta)$	M1		
//		$=2\cos\theta$	A 1	2	AG
/	(ii)	$z^2 + \frac{1}{z^2} = \cos 2\theta + i \sin 2\theta$			
		$+\cos(-2\theta) + i\sin(-2\theta)$	M1		
		$=2\cos 2\theta$	A 1	2	OE
	(iii)	$z^2 - z + 2 - \frac{1}{z} + \frac{1}{z^2}$			
		$=2\cos 2\theta - 2\cos \theta + 2$	M1		
		Use of $\cos 2\theta = 2\cos^2 \theta - 1$	m1		
		$=4\cos^2\theta-2\cos\theta$	A 1	3	AG

(b)	$z + \frac{1}{z} = 0 \qquad z = \pm i$	M1A1			
	$z + \frac{1}{z} = 1$ $z^2 - z + 1 = 0$	M1A1		Alternative: $\cos \theta = 0 \qquad \theta = \pm \frac{1}{2}\pi \qquad M1$	
	$z = \frac{1 \pm i\sqrt{3}}{2}$ Accept solution to (b) if done otherwise	A1F	5	$z = \pm i$ $\cos \theta = \frac{1}{2}$ $\theta = \pm \frac{1}{3}\pi$ $A1$ $M1$ $z = e^{\pm \frac{1}{3}\pi i} = \frac{1}{2} \left(1 \pm i\sqrt{3} \right)$ $A1 A1$	1
	Alternative If $\theta = +\frac{1}{2}\pi \theta = \frac{1}{3}\pi$	M1			
	$z = i z = \frac{1 + \sqrt{3}i}{2}$	A1			
	Or any correct z values of θ	M1			
	Any 2 correct answers	A 1			
	One correct answer only	B1			\Box
	Total		12		
				// ///	

(a) six roots of the equation
$$z^6 = 1$$
, giving your answers in the form $e^{i\phi}$, where $-\pi < \phi \leqslant \pi$. (3 marks)

(b) It is given that $w = e^{i\theta}$, where $\theta \neq n\pi$.

(i) Show that
$$\frac{w^2 - 1}{w} = 2i \sin \theta$$
. (2 marks)

(ii) Show that
$$\frac{w}{w^2 - 1} = -\frac{i}{2\sin\theta}$$
. (2 marks)

(iii) Show that
$$\frac{2i}{w^2 - 1} = \cot \theta - i$$
. (3 marks)

(iv) Given that
$$z = \cot \theta - i$$
, show that $z + 2i = zw^2$. (2 marks)

(c) (i) Explain why the equation

$$(z+2i)^6 = z^6$$

has five roots. (1 mark)

(ii) Find the five roots of the equation

$$(z+2i)^6=z^6$$

giving your answers in the form a + ib. (4 marks)

Imagine having general
Trigonometry/Binomial in
your complex HOME...

AQA JUNE 2006 FP2

MFP2 (cont)

MIFPZ (CONU)			
Q	Solution	Marks	Total	Comments
7(a)	$\frac{2k\pi i}{\epsilon}$	M1		
	$z = e^{-6}$, $k = 0, \pm 1, \pm 2, 3$	A2,1,0	3	OE
				M1A1 only if:
				(1) range for k is incorrect eg 0,1,2,3,4,5 (2) i is missing
(b)(i)	$w^2 - 1$ 1			
	$\frac{w^2 - 1}{w} = w - \frac{1}{w} = 2i\sin\theta$	M1A1	2	AG
(ii)				
	$\frac{w}{w^2 - 1} = \frac{1}{2i\sin\theta}$	M1		
			2	
	$=-\frac{\mathrm{i}}{2\sin\theta}$	A1	2	AG
(iii)	$2i - 2iw^{-1}i$			
	$\frac{2i}{w^2 - 1} = \frac{-2iw^{-1}i}{2\sin\theta}$	M1		Or for $\frac{1}{\sin\theta} e^{i\theta}$
	$=\frac{1}{\sin\theta}(\cos\theta-\mathrm{i}\sin\theta)$	A1		
	$= \cot \theta - i$	A1	3	AC
(iv)		111	2	AG
(14)	$z = \frac{2i}{w^2 - 1}$ Or $z + 2i = \frac{2i}{w^2 - 1} + 2i$ $z + 2i = zw^2$	M1		ie any correct method
	$z + 2i = zw^2$	A1	2	AG
			_	

AQA JAN 2007 FP2

5 (a) Prove by induction that, if n is a positive integer,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

(5 marks)

(b) Find the value of
$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$$
.

(2 marks)

(c) Show that

$$(\cos \theta + i \sin \theta)(1 + \cos \theta - i \sin \theta) = 1 + \cos \theta + i \sin \theta$$

(3 marks)

(d) Hence show that

$$\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 = 0$$
 (4 marks)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
5(a)	Assume true for $n = k$			
	$(\cos\theta + i\sin\theta)^{k+1}$			
	$= (\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$	M1		
	Multiply out	A1		Any form
	$=\cos(k+1)\theta+i\sin(k+1)\theta$	A1		
	True for $n = 1$ shown	B1		
	$P(k) \Rightarrow P(k+1)$ and $P(1)$ true	E1	5	Allow E1 only if previous 4 marks earned
(b)	$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 = \cos\frac{6\pi}{6} + i\sin\frac{6\pi}{6}$	M1		
	=-1	A1	2	
(c)	(M1		
	$=\cos\theta+\cos^2\theta-i\sin\theta\cos\theta$			
	$+i\sin\theta+i\sin\theta\cos\theta+\sin^2\theta$	A1		$(Accept -i^2 \sin^2 \theta)$
				(Accept $-i^2 \sin^2 \theta$) Or $e^{i\theta} (1 + e^{-i\theta})$
	$=1+\cos\theta+i\sin\theta$	A 1	3	AG

(c)	$(\cos\theta + i\sin\theta)(1 + \cos\theta - i\sin\theta)$	M1		
	$= \cos\theta + \cos^2\theta - i\sin\theta\cos\theta$			
	$+i\sin\theta+i\sin\theta\cos\theta+\sin^2\theta$	A 1		(Accept $-i^2 \sin^2 \theta$) Or $e^{i\theta} (1 + e^{-i\theta})$
				Or $e^{i\theta} \left(1 + e^{-i\theta} \right)$
	$=1+\cos\theta+i\sin\theta$	A1	3	AG
	π			
(d)	$\theta = \frac{\pi}{6}$ used	M1		In the context of part (c)
	Part (c) raised to power 6	M1		
	Use of result in part (b)	A 1		
	$\left(1+\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)^6+$			
	$\left(1+\cos\frac{\pi}{6}-i\sin\frac{\pi}{6}\right)^6=0$	A1	4	AG
	Total		14	

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2\theta$$

(3 marks)

(ii) Find a similar expression for $\sin 3\theta$.

(1 mark)

(iii) Deduce that

$$\tan 3\theta = \frac{\tan^3 \theta - 3 \tan \theta}{3 \tan^2 \theta - 1} \tag{3 marks}$$

(b) (i) Hence show that $\tan \frac{\pi}{12}$ is a root of the cubic equation

$$x^3 - 3x^2 - 3x + 1 = 0 (3 marks)$$

- (ii) Find two other values of θ , where $0 < \theta < \pi$, for which $\tan \theta$ is a root of this cubic equation. (2 marks)
- (c) Hence show that

$$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} = 4 \tag{2 marks}$$

AQA JAN 2008 FP2

Imagine having general
Trigonometry/
Binomial in your complex
HOME...

6(a)(i)	$\cos 3\theta + i\sin 3\theta = (\cos \theta + i\sin \theta)^3$	M1		
	$= \cos^3 \theta + 3i\cos^2 \theta \sin \theta + 3i^2 \cos \theta \sin^2 \theta$			
	$+i^3 \sin^3 \theta$	A 1		
	Real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	A1	3	AG
(ii)	Imaginary parts:			
	$\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta$	A1F	1	
(iii)	$\tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta}$	M1		Used
	$= \frac{3\cos^2\theta\sin\theta - \sin^3\theta}{\cos^3\theta - 3\sin^2\theta\cos\theta}$	A1F		Error in $\sin 3\theta$
	$=\frac{3\tan\theta-\tan^3\theta}{2}$			
	$1-3\tan^2\theta$			
	$=\frac{\tan^3\theta - 3\tan\theta}{3\tan^2\theta - 1}$	A 1	3	AG

	Total		14				
	$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} = 4$	A 1	2				
(c)	$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} + \tan\frac{9\pi}{12} = 3$	M1		Must be hence			
(ii)	Other roots are $\tan \frac{5\pi}{12}$, $\tan \frac{9\pi}{12}$	B1B1	2				
	$\tan\frac{\pi}{12} \text{ is a root of } 1 = \frac{x^3 - 3x}{3x^2 - 1}$ $x^3 - 3x^2 - 3x + 1 = 0$	M1 A1	3	Must be hence			
(b)(i)	$\tan\frac{3\pi}{12} = 1$	B1		Used (possibly implied)			

$$\left(z + \frac{1}{z}\right) \left(z - \frac{1}{z}\right)$$

(1 mark)

(ii) Hence, or otherwise, expand

$$\left(z + \frac{1}{z}\right)^4 \left(z - \frac{1}{z}\right)^2$$

(3 marks)

(b) (i) Use De Moivre's theorem to show that if $z = \cos \theta + i \sin \theta$ then

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

(3 marks)

(ii) Write down a corresponding result for $z^n - \frac{1}{z^n}$.

(1 mark)

(c) Hence express $\cos^4 \theta \sin^2 \theta$ in the form

$$A\cos 6\theta + B\cos 4\theta + C\cos 2\theta + D$$

where A, B, C and D are rational numbers.

(4 marks)

(d) Find $\int \cos^4 \theta \sin^2 \theta \ d\theta$.

(2 marks)

AQA JUNE 2008 FP2

Imagine having general
Trigonometry/
Binomial in your complex
HOME...

MFP2 (cont)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(z + \frac{1}{z}\right)\left(z - \frac{1}{z}\right) = z^2 - \frac{1}{z^2}$	B1	1	
(ii)	$\left(z^{2} - \frac{1}{z^{2}}\right)^{2} \left(z + \frac{1}{z}\right)^{2}$ $= \left(z^{4} - 2 + \frac{1}{z^{4}}\right) \left(z^{2} + 2 + \frac{1}{z^{2}}\right)$	M1A1		Alternatives for M1A1: $ \left(z^{4} + 4z^{2} + 6 + \frac{4}{z^{2}} + \frac{1}{z^{4}}\right) \left(z^{2} - 2 + \frac{1}{z^{2}}\right) \text{ or } $
	$= z^{6} + \frac{1}{z^{6}} + 2\left(z^{4} + \frac{1}{z^{4}}\right) - \left(z^{2} + \frac{1}{z^{2}}\right) - 4$	A 1	3	$ (z^{2} - z^{4})(z^{2}) $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z}) + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $ $ (z^{3} - \frac{1}{z^{3}})^{2} - 2(z^{3} - \frac{1}{z^{3}})(z - \frac{1}{z})^{2} + (z - \frac{1}{z})^{2} $

			,					
(b)(i)	$z^{n} + \frac{1}{z^{n}} = \cos n\theta + i \sin n\theta + \cos(-n\theta) + i \sin(-n\theta)$	M1A1						
	$=2\cos n\theta$	A 1	3	AG SC: if solution is incomplete and $(\cos \theta + i \sin \theta)^{-n}$ is written as $\cos n\theta - i \sin n\theta$, award M1A0A1				
(ii)	$z^n - z^{-n} = 2i\sin n\theta$	B1	1					
(c)	RHS = $2\cos 6\theta + 4\cos 4\theta - 2\cos 2\theta - 4$ LHS = $-64\cos^4 \theta \sin^2 \theta$ $\cos^4 \theta \sin^2 \theta$	M1 A1F M1		ft incorrect values in (a)(ii) provided they are cosines				
	$= -\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}$	A 1	4					
(d)	$-\frac{\sin 6\theta}{192} - \frac{\sin 4\theta}{64} + \frac{\sin 2\theta}{64} + \frac{\theta}{16} (+k)$	M1 A1F	2	ft incorrect coefficients but not letters A , B , C , D				
	Total		14					

AQA JUNE 2009 FP2

5 (a) Prove by induction that, if n is a positive integer,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

(5 marks)

(b) Hence, given that

$$z = \cos \theta + i \sin \theta$$

show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta \tag{3 marks}$$

(c) Given further that $z + \frac{1}{z} = \sqrt{2}$, find the value of

$$z^{10} + \frac{1}{z^{10}}$$

(4 marks)

7 (a) (i) Use de Moivre's Theorem to show that

$$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$$

and find a similar expression for $\sin 5\theta$.

(5 marks)

(ii) Deduce that

$$\tan 5\theta = \frac{\tan \theta (5 - 10 \tan^2 \theta + \tan^4 \theta)}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$$
 (3 marks)

(b) Explain why $t = \tan \frac{\pi}{5}$ is a root of the equation

$$t^4 - 10t^2 + 5 = 0$$

and write down the three other roots of this equation in trigonometrical form.

(3 marks)

(c) Deduce that

$$\tan\frac{\pi}{5}\tan\frac{2\pi}{5} = \sqrt{5} \tag{5 marks}$$

AQA JUNE 2011 FP2

Imagine having general Trigonometry//

Binomial in

your complex

HOME...

MFP2 (cont)

WIFT 2 (COIII				1
Q	Solution	Marks	Total	Comments
7(a)(i)	$1 + \sqrt{3}i = 2e^{\frac{\pi i}{3}}$ $1 - i = \sqrt{2}e^{-\frac{\pi i}{4}}$	B1		B1 both correct
	$1 - i = \sqrt{2} e^{-\frac{\pi i}{4}}$	B1B1	3	OE
(ii)	$2^{\frac{21}{2}}$ or equivalent single expression Raising and adding powers of e	B1F M1		No decimals; must include fractional powers
	$\frac{17\pi}{12}$ or equivalent angle	AIF	3	Denominators of angles must be different
(b)	$z = \sqrt[3]{2^{10}} \sqrt{2} e^{\frac{17\pi i}{36} + \frac{2k\pi i}{3}}$ $\sqrt[3]{2^{10}} \sqrt{2} = 8\sqrt{2}$	M1		
	$\sqrt[3]{2^{10}\sqrt{2}} = 8\sqrt{2}$	B1		CAO
	$\theta = \frac{17\pi}{36}, -\frac{7\pi}{36}, -\frac{31\pi}{36}$	A2,1F	4	Correct answers outside range: deduct 1 mark only
	Total		10	

8 (a) Use De Moivre's Theorem to show that, if $z = \cos \theta + i \sin \theta$, then

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

(3 marks)

(b) (i) Expand $\left(z^2 + \frac{1}{z^2}\right)^4$.

(1 mark)

(ii) Show that

$$\cos^4 2\theta = A \cos 8\theta + B \cos 4\theta + C$$

where A, B and C are rational numbers.

(4 marks)

(c) Hence solve the equation

$$8\cos^4 2\theta = \cos 8\theta + 5$$

for $0 \le \theta \le \pi$, giving each solution in the form $k\pi$.

(3 marks)

(d) Show that

$$\int_0^{\frac{\pi}{2}} \cos^4 2\theta \, \mathrm{d}\theta = \frac{3\pi}{16}$$

(3 marks)

Aqa
June
2012
FP2

Imagine having general
Trigonometry/

Binomial in your complex

HOME ...

MFP2

_ ,	Q	Solution	Marks	Total	Comments
	8(a)	Use of $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$	M1		Stated or used
		$\cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$	A 1		allow $\frac{2}{3}$ if this line is assumed
					allow if complex conjugate used
/,		$z^n + \frac{1}{z^n} = 2\cos n\theta$	A1	3	AG
//	(b)(i)	$z^{8} + 4z^{4} + 6 + 4z^{-4} + z^{-8}$	B1	1	allow in retrospect
/	(ii)	$z^2 + \frac{1}{z^2} = 2\cos 2\theta \text{used}$	B1		Can be implied from (b)(i)
		$(2\cos 2\theta)^4 = 2\cos 8\theta + 8\cos 4\theta + 6$	M1A1		M1 for RHS A1 for whole line
		$\cos^4 2\theta = \frac{1}{8}\cos 8\theta + \frac{1}{2}\cos 4\theta + \frac{3}{8}$	A1F	4	ft coefficients on previous line
		Alternative to (b)(ii)			
		$\cos^4 2\theta = \left(\frac{1+\cos 4\theta}{2}\right)^2$	(M1) (A1)		
		$\cos^2 4\theta = \frac{1}{2}(1 + \cos 8\theta)$	(B1)		
		Final result	(A1)		

- Use de Moivre's theorem to show that 8 (a) (i)
 - $\cos 4\theta = \cos^4 \theta 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$

and find a similar expression for $\sin 4\theta$.

(5 marks)

2013 FP2

Deduce that (ii)

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$$

Explain why $t = \tan \frac{\pi}{16}$ is a root of the equation

$$t^4 + 4t^3 - 6t^2 - 4t + 1 = 0$$

and write down the three other roots in trigonometric form.

(4 marks)

Hence show that (c)

$$\tan^2\frac{\pi}{16} + \tan^2\frac{3\pi}{16} + \tan^2\frac{5\pi}{16} + \tan^2\frac{7\pi}{16} = 28$$

(5 marks)

Imagine having general/ Trigonometry Binomial in your complex HOME ...

(b)

(3 marks)

Q	Solution	Marks	Total	Comments
8(a)(i)	$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^{4}$ $\cos^{4} \theta + 4i \cos^{3} \theta \sin \theta + 6i^{2} \cos^{2} \theta \sin^{2} \theta$ $+ 4i^{3} \cos \theta \sin^{3} \theta + i^{4} \sin^{4} \theta$ Equating "their" real parts $\cos 4\theta = \cos^{4} \theta - 6\cos^{2} \theta \sin^{2} \theta + \sin^{4} \theta$ $\sin 4\theta = 4\cos^{3} \theta \sin \theta - 4\cos \theta \sin^{3} \theta$	M1 A1 M1 A1 B1	5	De Moivre & attempt to expand RHS any correct expansion or imaginary parts AG be convinced correct
(ii)	$\tan 4\theta = \frac{\text{"their expression for "} \sin 4\theta}{\text{"their expression for "} \cos 4\theta}$ Division by $\cos^4 \theta$ $\tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$	M1 m1 A1	3	AG be convinced

MEI Jan 2006 FP2

- **2** In this question, θ is a real number with $0 < \theta < \frac{1}{6}\pi$, and $w = \frac{1}{2}e^{3j\theta}$.
 - (i) State the modulus and argument of each of the complex numbers

$$w$$
, w * and jw .

Illustrate these three complex numbers on an Argand diagram.

(ii) Show that
$$(1+w)(1+w^*) = \frac{5}{4} + \cos 3\theta$$
.

Infinite series C and S are defined by

$$C = \cos 2\theta - \frac{1}{2}\cos 5\theta + \frac{1}{4}\cos 8\theta - \frac{1}{8}\cos 11\theta + \dots,$$

$$S = \sin 2\theta - \frac{1}{2}\sin 5\theta + \frac{1}{4}\sin 8\theta - \frac{1}{8}\sin 11\theta + \dots.$$

(iii) Show that
$$C = \frac{4\cos 2\theta + 2\cos \theta}{5 + 4\cos 3\theta}$$
, and find a similar expression for S.

- 2 (a) You are given the complex numbers $w = 3e^{-\frac{1}{12}\pi j}$ and $z = 1 \sqrt{3}j$.
 - (i) Find the modulus and argument of each of the complex numbers w, z and $\frac{w}{z}$. [5]
 - (ii) Hence write $\frac{w}{z}$ in the form a + bj, giving the exact values of a and b. [2]
 - (b) In this part of the question, n is a positive integer and θ is a real number with $0 < \theta < \frac{\pi}{n}$.
 - (i) Express $e^{-\frac{1}{2}j\theta} + e^{\frac{1}{2}j\theta}$ in simplified trigonometric form, and hence, or otherwise, show that

$$1 + e^{j\theta} = 2e^{\frac{1}{2}j\theta}\cos{\frac{1}{2}\theta}.$$
 [4]

Series C and S are defined by

$$C = 1 + \binom{n}{1} \cos \theta + \binom{n}{2} \cos 2\theta + \binom{n}{3} \cos 3\theta + \dots + \binom{n}{n} \cos n\theta,$$

$$S = \binom{n}{1} \sin \theta + \binom{n}{2} \sin 2\theta + \binom{n}{3} \sin 3\theta + \dots + \binom{n}{n} \sin n\theta.$$

(ii) Find C and S, and show that
$$\frac{S}{C} = \tan \frac{1}{2}n\theta$$
. [7]

MEI Jan 2007 FP2

Imagine having general C+iS in your complex HOME...

(ii)
$$C + jS = 1 + \binom{n}{1} e^{j\theta} + \binom{n}{2} e^{2j\theta} + \dots + \binom{n}{n} e^{nj\theta}$$

$$= (1 + e^{j\theta})^n$$

$$= 2^n e^{\frac{1}{2}n\theta} \int \cos^n \frac{1}{2}\theta$$

$$C = 2^n \cos(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta$$

$$S = 2^n \sin(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta$$

$$S = 2^n \sin(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta$$

$$S = \frac{2^n \sin(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta}{2^n \cos(\frac{1}{2}n\theta) \cos^n \frac{1}{2}\theta} = \frac{\sin(\frac{1}{2}n\theta)}{\cos(\frac{1}{2}n\theta)} = \tan(\frac{1}{2}n\theta)$$
B1 ag
$$T$$
Allow ft from $C + jS = e^{\frac{1}{2}n\theta} \times any$ real function of n and θ

MEI Jan 2008 FP2

- 2 (a) Find the 4th roots of 16j, in the form $re^{j\theta}$ where r > 0 and $-\pi < \theta \le \pi$. Illustrate the 4th roots on an Argand diagram. [6]
 - **(b) (i)** Show that $(1 2e^{j\theta})(1 2e^{-j\theta}) = 5 4\cos\theta$. [3]

Series C and S are defined by

$$C = 2\cos\theta + 4\cos 2\theta + 8\cos 3\theta + \dots + 2^n\cos n\theta,$$

$$S = 2\sin\theta + 4\sin 2\theta + 8\sin 3\theta + \dots + 2^n\sin n\theta.$$

(ii) Show that
$$C = \frac{2\cos\theta - 4 - 2^{n+1}\cos(n+1)\theta + 2^{n+2}\cos n\theta}{5 - 4\cos\theta}$$
, and find a similar expression for S. [9]

		1	,
(ii)	$C + jS = 2e^{j\theta} + 4e^{2j\theta} + 8e^{3j\theta} + + 2^n e^{nj\theta}$	M1	Obtaining a geometric series
	$= \frac{2 e^{j\theta} \left(1 - (2 e^{j\theta})^n\right)}{1 - 2 e^{j\theta}}$	M1 A1	Summing (M0 for sum to infinity)
	$= \frac{2 e^{j\theta} (1 - 2^{n} e^{nj\theta}) (1 - 2 e^{-j\theta})}{(1 - 2 e^{j\theta}) (1 - 2 e^{-j\theta})}$ $2 e^{j\theta} - 4 - 2^{n+1} e^{(n+1)j\theta} + 2^{n+2} e^{nj\theta}$	M1	
	$=\frac{2c^{2}-4-2}{5-4\cos\theta}$	A2	
	$C = \frac{2\cos\theta - 4 - 2^{n+1}\cos(n+1)\theta + 2^{n+2}\cos n\theta}{5 - 4\cos\theta}$	M1	Give A1 for two correct terms in numerator
	$S = \frac{2\sin\theta - 2^{n+1}\sin(n+1)\theta + 2^{n+2}\sin n\theta}{5 - 4\cos\theta}$	A1 ag	Equating real (or imaginary) parts
	$5-4\cos\theta$	A1 9	

3 (a) (i) Sketch the graph of $y = \arcsin x$ for $-1 \le x \le 1$.

[1]

Find $\frac{dy}{dx}$, justifying the sign of your answer by reference to your sketch.

[4]

(ii) Find the exact value of the integral $\int_0^1 \frac{1}{\sqrt{2-x^2}} dx$.

[3]

(b) The infinite series C and S are defined as follows.

$$C = \cos\theta + \frac{1}{3}\cos 3\theta + \frac{1}{9}\cos 5\theta + \dots$$

$$S = \sin \theta + \frac{1}{3}\sin 3\theta + \frac{1}{9}\sin 5\theta + \dots$$

By considering C + jS, show that

$$C = \frac{3\cos\theta}{5 - 3\cos 2\theta},$$

and find a similar expression for S.

[11]

MEI JAN 2010 FP2

2 (a) Use de Moivre's theorem to find the constants a, b, c in the identity

$$\cos 5\theta \equiv a\cos^5\theta + b\cos^3\theta + c\cos\theta.$$

[6]

(b) Let

$$C = \cos \theta + \cos \left(\theta + \frac{2\pi}{n}\right) + \cos \left(\theta + \frac{4\pi}{n}\right) + \dots + \cos \left(\theta + \frac{(2n-2)\pi}{n}\right),$$

and
$$S = \sin \theta + \sin \left(\theta + \frac{2\pi}{n}\right) + \sin \left(\theta + \frac{4\pi}{n}\right) + \dots + \sin \left(\theta + \frac{(2n-2)\pi}{n}\right)$$
,

where n is an integer greater than 1.

By considering C + jS, show that C = 0 and S = 0.

[7]

(c) Write down the Maclaurin series for e^t as far as the term in t^2 .

Hence show that, for t close to zero,

$$\frac{t}{\mathrm{e}^t - 1} \approx 1 - \frac{1}{2}t.$$

[5]

, `\			
(c)	$e^t \approx 1 + t + \frac{1}{2}t^2$	B1	Ignore terms in higher powers
	$\frac{t}{e^t - 1} \approx \frac{t}{t + \frac{1}{2}t^2}$	M1 A1	Substituting Maclaurin series
	$\frac{t}{t + \frac{1}{2}t^2} = \frac{1}{1 + \frac{1}{2}t} = \left(1 + \frac{1}{2}t\right)^{-1} = 1 - \frac{1}{2}t + \dots$	M1	Suitable manipulation and use of binomial theorem
	OR $\frac{1}{1+\frac{1}{2}t} = \frac{1}{1+\frac{1}{2}t} \times \frac{1-\frac{1}{2}t}{1-\frac{1}{2}t} = \frac{1-\frac{1}{2}t}{1-\frac{1}{4}t^2}$ M1		
	Hence $\frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t$	A1 (ag)	
	OR $(e^t - 1)(1 - \frac{1}{2}t) = (t + \frac{1}{2}t^2 +)(1 - \frac{1}{2}t)$ M		Substituting Maclaurin series
	\mathbf{A}^{1}		Correct expression
	$\approx t + \text{terms in } t^3$		Multiplying out
	$\Rightarrow \frac{t}{e^t - 1} \approx 1 - \frac{1}{2}t$		Convincing explanation
		5	18

/ / / / /

MEI JAN 2012 FP2

2 (a) The infinite series C and S are defined as follows.

$$C = 1 + a \cos \theta + a^2 \cos 2\theta + \dots$$

$$S = a \sin \theta + a^2 \sin 2\theta + a^3 \sin 3\theta + \dots,$$

where a is a real number and |a| < 1.

By considering
$$C + j S$$
, show that $C = \frac{1 - a \cos \theta}{1 + a^2 - 2a \cos \theta}$ and find a corresponding expression for S .

(b) Express the complex number $z = -1 + j\sqrt{3}$ in the form $r e^{j\theta}$.

Find the 4th roots of z in the form $r e^{j\theta}$.

Show z and its 4th roots in an Argand diagram.

Find the product of the 4th roots and mark this as a point on your Argand diagram.

[8]

C	uesti	ion	Answer	Marks	Gui	idance
2	(a)		$C + jS = 1 + ae^{j\theta} + a^2e^{2j\theta} + \dots$	M1	Forming $C + jS$ as a series of powers	$a^2 (\cos 2\theta + j \sin 2\theta)$ insufficient. Powers must be correct
			This is a geometric series with $r = ae^{j\theta}$	M1	Identifying G.P. and attempting sum. Dependent on first M1	
			Sum to infinity = $\frac{1}{1 - ae^{j\theta}}$	A 1		
			$=\frac{1}{1-ae^{j\theta}}\times\frac{1-ae^{-j\theta}}{1-ae^{-j\theta}}$	M1*	Multiplying numerator and denominator by $1-ae^{-j\theta}$ o.e.	
			$=\frac{1-ae^{-j\theta}}{1-ae^{j\theta}-ae^{-j\theta}+a^2}$	M1	Multiplying out denominator. Dependent on M1*	Use of FOIL with powers combined correctly (allow one slip)
			$=\frac{1-a(\cos\theta-j\sin\theta)}{1-2a\cos\theta+a^2}$	M1	Introducing trig functions. Dependent on M1*	Condone e.g. $e^{-j\theta} = \cos \theta + j \sin \theta$
			$= \frac{1 - a\cos\theta}{1 - 2a\cos\theta + a^2} + \frac{aj\sin\theta}{1 - 2a\cos\theta + a^2}$			
			$\Rightarrow C = \frac{1 - a\cos\theta}{1 - 2a\cos\theta + a^2}$	E1		Answer given. www which leads to C
			and $S = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}$	A 1		
				[8]		

$$1 + e^{j2\theta} = 2\cos\theta(\cos\theta + j\sin\theta).$$

[2]

[7]

[2]

(ii) The series C and S are defined as follows.

$$C = 1 + \binom{n}{1} \cos 2\theta + \binom{n}{2} \cos 4\theta + \dots + \cos 2n\theta$$

$$S = \binom{n}{1}\sin 2\theta + \binom{n}{2}\sin 4\theta + \dots + \sin 2n\theta$$

By considering C + jS, show that

$$C = 2^n \cos^n \theta \cos n\theta,$$

and find a corresponding expression for S.

- (b) (i) Express $e^{j2\pi/3}$ in the form x + jy, where the real numbers x and y should be given exactly. [1]
 - (ii) An equilateral triangle in the Argand diagram has its centre at the origin. One vertex of the triangle is at the point representing 2 + 4j. Obtain the complex numbers representing the other two vertices, giving your answers in the form x + jy, where the real numbers x and y should be given exactly.
 - (iii) Show that the length of a side of the triangle is $2\sqrt{15}$.

Imagine
having
general
C+iS in
your
complex

HOME...

	Questi	on	Answer	Marks	Guida	ance
2	(a)	(ii)	$C + jS = 1 + \binom{n}{1} e^{j2\theta} + \binom{n}{2} e^{j4\theta} + \dots + e^{j2n\theta}$	Ml	Forming $C + jS$	
		\	$= \left(1 + e^{j2\theta}\right)^n$	M1 A1	Recognising as binomial expansion	
			$=2^n\cos^n\theta(\cos\theta+\mathrm{j}\sin\theta)^n$			
			$=2^n\cos^n\theta\big(\cos n\theta+\mathrm{j}\sin n\theta\big)$	M1 A1	Applying (i) and De Moivre o.e.	Dependent on M1M1 above
			$\Rightarrow C = 2^n \cos^n \theta \cos n\theta$	A1(ag)	Completion www	Need to see $e^{jn\theta} = \cos n\theta + j\sin n\theta$ o.e.
			and $S = 2^n \cos^n \theta \sin n\theta$	A1 [7]		
2	(b)	(i)	$e^{j\frac{2\pi}{3}} = \cos\frac{2\pi}{3} + j\sin\frac{2\pi}{3} = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$	B1	Must evaluate trigonometric functions	
2	(b)	(ii)	Other two vertices are $(2+4j)e^{j\frac{2\pi}{3}}$	[1] M1	Award for idea of rotation by $\frac{2\pi}{3}$	e.g. use of $\arctan 2 + \frac{2\pi}{3}$ (3.202 rad)
			$= \left(2 + 4j\right) \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)$			(must be 2)
		/	$=(-1-2\sqrt{3})+j(-2+\sqrt{3})$	AlAl	May be given as co-ordinates	
			and $(2+4j)e^{j\frac{4\pi}{3}} = (2+4j)e^{-j\frac{2\pi}{3}}$	M1	Award for idea of rotation by $-\frac{2\pi}{3}$	e.g. use of $\arctan 2 + \frac{4\pi}{3}$ (5.296 rad)
			$= \left(2 + 4j\right) \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right)$			(must be 2)
//			$= \left(-1 + 2\sqrt{3}\right) + j\left(-2 - \sqrt{3}\right)$	AlAl	May be given as co-ordinates	If A0A0A0A0 award SC1 for awrt -4.46 - 0.27j and 2.46 - 3.73j

January 2013 Mark Scheme 4756 Guidance Question Marks Answer Length of $(2+4j) = \sqrt{20}$ (iii) (b) So length of side = $2\sqrt{20}\cos\frac{\pi}{6} = 2\sqrt{20} \times \frac{\sqrt{3}}{2}$ Alternative: finding distance between Complete method (2, 4) and $\left(-1 - 2\sqrt{3}, -2 + \sqrt{3}\right)$ o.e. M1 $=2\sqrt{15}$ Completion www A1(ag) [2]

[8]

OCR JAN 2008 FP3

Jan 2008

3

4 The integrals C and S are defined by

$$C = \int_0^{\frac{1}{2}\pi} e^{2x} \cos 3x \, dx \qquad \text{and} \qquad S = \int_0^{\frac{1}{2}\pi} e^{2x} \sin 3x \, dx.$$

By considering C + iS as a single integral, show that

$$C = -\frac{1}{13} (2 + 3e^{\pi}),$$

and obtain a similar expression for S.

(You may assume that the standard result for $\int e^{kx} dx$ remains true when k is a complex constant, so that $\int e^{(a+ib)x} dx = \frac{1}{a+ib} e^{(a+ib)x}$.)

4
$$(C+iS=)$$
 $\int_0^{12\pi} e^{2x} (\cos 3x + i \sin 3x) (dx)$ $\cos 3x + i \sin 3x = e^{3ix}$ B1 For using de Moivre, seen or implied $\int_0^{12\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{12\pi}$ B1 For writing as a single integral in exp form For correct integration (ignore limits)
$$= \frac{2-3i}{4+9} \left(e^{(2+3i)\frac{1}{2}\pi} - e^0 \right) = \frac{2-3i}{13} \left(-ie^{\pi} - 1 \right)$$
 A1 For substituting limits correctly (unsimplified) (may be earned at any stage) For multiplying by complex conjugate of 2+3i $\left(\frac{1}{13} \left(-2 - 3e^{\pi} + i(3 - 2e^{\pi}) \right) \right)$ A1 For equating real and/or imaginary parts $C = -\frac{1}{13} \left(2 + 3e^{\pi} \right)$ A1 For correct expression AG
$$S = \frac{1}{13} \left(3 - 2e^{\pi} \right)$$
 A1 For correct expression

Ocr June 2010 FP3

5 Convergent infinite series C and S are defined by

$$C = 1 + \frac{1}{2}\cos\theta + \frac{1}{4}\cos 2\theta + \frac{1}{8}\cos 3\theta + \dots ,$$

$$S = \frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots .$$

(i) Show that
$$C + iS = \frac{2}{2 - e^{i\theta}}$$
. [4]

(ii) Hence show that
$$C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}$$
, and find a similar expression for S. [4]

5 (i)
$$C + iS = 1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \frac{1}{8}e^{3i\theta} + \dots$$

M1 For using
$$\cos n\theta + i \sin n\theta = e^{i n\theta}$$

at least once for
$$n \ge 2$$

$$=\frac{1}{1-\frac{1}{2}e^{i\theta}}=\frac{2}{2-e^{i\theta}}$$

(ii)
$$C + iS = \frac{2(2 - e^{-i\theta})}{(2 - e^{i\theta})(2 - e^{-i\theta})}$$

$$= \frac{4 - 2e^{-i\theta}}{4 - 2(e^{i\theta} + e^{-i\theta}) + 1} = \frac{4 - 2\cos\theta + 2i\sin\theta}{4 - 4\cos\theta + 1}$$

M1 For reverting to
$$\cos\theta$$
 and $\sin\theta$ and equating Re *OR* Im parts

$$\Rightarrow C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}, \quad S = \frac{2\sin\theta}{5 - 4\cos\theta}$$

[1]

OCR JAN 2013 FP3

Jan 2013

- 7 Let $S = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + ... + e^{10i\theta}$.
 - (i) (a) Show that, for $\theta \neq 2n\pi$, where n is an integer,

$$S = \frac{e^{\frac{1}{2}i\theta} \left(e^{10i\theta} - 1\right)}{2i\sin\left(\frac{1}{2}\theta\right)}.$$
 [4]

- **(b)** State the value of S for $\theta = 2n\pi$, where n is an integer.
- (ii) Hence show that, for $\theta \neq 2n\pi$, where *n* is an integer,

$$\cos\theta + \cos 2\theta + \cos 3\theta + \dots + \cos 10\theta = \frac{\sin\left(\frac{21}{2}\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)} - \frac{1}{2}.$$
 [3]

(iii) Hence show that $\theta = \frac{1}{11}\pi$ is a root of $\cos \theta + \cos 2\theta + \cos 3\theta + ... + \cos 10\theta = 0$ and find another root in the interval $0 < \theta < \frac{1}{4}\pi$.

3

, i,	i i !	į į	į į			
7	(i)	(a)	$e^{i\theta} + e^{2i\theta} + \dots + e^{10i\theta} = \frac{e^{i\theta} \left(\left(e^{i\theta} \right)^{10} - 1 \right)}{e^{i\theta} - 1}$	M1 A1	Sum of a GP	
			$=\frac{e^{\frac{1}{2}i\theta}\left(e^{10i\theta}-1\right)}{e^{\frac{1}{2}i\theta}-e^{-\frac{1}{2}i\theta}}$	M1		
			$=\frac{e^{\frac{1}{2}i\theta}\left(e^{10i\theta}-1\right)}{2i\sin\left(\frac{1}{2}\theta\right)}$	A1	AG	
				[4]		
7	(i)	(b)	$\theta = 2n\pi \Rightarrow \text{sum} = 10$	B1		
				[1]		
						/ / /

	Questi	ion	Answer	Marks	Guida	ance
7	(ii)		$\cos\theta + \cos 2\theta + \dots + \cos 10\theta = \operatorname{Re}\left(\frac{e^{\frac{1}{2}i\theta}\left(e^{10i\theta} - 1\right)}{2i\sin\left(\frac{1}{2}\theta\right)}\right)$	M1	Take real parts	
/			$=\frac{\operatorname{Re}\left(-\mathrm{i}\mathrm{e}^{\frac{1}{2}\mathrm{i}\theta}\left(\mathrm{e}^{10\mathrm{i}\theta}-1\right)\right)}{2\sin\left(\frac{1}{2}\theta\right)}=\frac{\operatorname{Re}\left(-\mathrm{i}\mathrm{e}^{\frac{21}{2}\mathrm{i}\theta}+\mathrm{i}\mathrm{e}^{\frac{1}{2}\mathrm{i}\theta}\right)}{2\sin\left(\frac{1}{2}\theta\right)}$	M1	Manipulate expression	Must at least make genuine progress in sorting real part of numerator, or in converting numerator to trig terms.
1111			$=\frac{\sin\left(\frac{21}{2}\theta\right)-\sin\left(\frac{1}{2}\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)}$			
			$=\frac{\sin\left(\frac{21}{2}\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)}-\frac{1}{2}$	A 1	AG	
				[3]		
7	(iii)		$\cos\frac{1}{11}\pi + \cos\frac{2}{11}\pi + \dots + \cos\frac{10}{11}\pi = \frac{\sin(\frac{21}{22}\pi)}{2\sin(\frac{1}{22}\pi)} - \frac{1}{2}$	M1		For second M1, must convince that solution is exact and not simply from calculator.
			But $\sin \frac{21}{22} \pi = \sin \left(\pi - \frac{21}{22} \pi \right) = \sin \frac{1}{22} \pi$	M1		
			So RHS = $\frac{1}{2} - \frac{1}{2} = 0$, so $\frac{1}{11}\pi$ is a root	A1	AG	
			Using $\sin(2\pi + x) = \sin x$ gives			
			$2\pi + \frac{1}{2}\theta = \frac{21}{2}\theta \Rightarrow \theta = \frac{1}{5}\pi$	A 1		
				[4]		

OCR JUNE 2007 FP3

7 (i) Show that
$$(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2\cos\phi)z + 1$$
. [1]

- (ii) Write down the seven roots of the equation $z^7 = 1$ in the form $e^{i\theta}$ and show their positions in an Argand diagram. [4]
- (iii) Hence express $z^7 1$ as the product of one real linear factor and three real quadratic factors. [5]

OCR JUNE 2010 FP3

- 3 In this question, w denotes the complex number $\cos \frac{2}{5}\pi + i \sin \frac{2}{5}\pi$.
 - (i) Express w^2 , w^3 and w^* in polar form, with arguments in the interval $0 \le \theta < 2\pi$.
 - (ii) The points in an Argand diagram which represent the numbers

1,
$$1+w$$
, $1+w+w^2$, $1+w+w^2+w^3$, $1+w+w^2+w^3+w^4$

are denoted by A, B, C, D, E respectively. Sketch the Argand diagram to show these points and join them in the order stated. (Your diagram need not be exactly to scale, but it should show the important features.) [4]

(iii) Write down a polynomial equation of degree 5 which is satisfied by w.

[1]

[4]

3

(i)
$$w^2 = \cos \frac{4}{5}\pi + i \sin \frac{4}{5}\pi$$

$$w^3 = \cos\frac{6}{5}\pi + i\sin\frac{6}{5}\pi$$

$$w^* = \cos\frac{2}{5}\pi - i\sin\frac{2}{5}\pi$$

$$=\cos\frac{8}{5}\pi + i\sin\frac{8}{5}\pi$$

Allow $\operatorname{cis} \frac{k}{5}\pi$ and $e^{\frac{k}{5}\pi i}$ throughout

B1 For correct value

B1 For correct value

B1 For w^* seen or implied

B1 4 For correct value

SR For exponential form with i missing, award B0 first time, allow others

(ii)

(iii)
$$z^5 - 1 = 0$$
 OR $z^5 + z^4 + z^3 + z^2 + z = 0$

B1* For 1+w in approximately correct position

B1 For $AB \approx BC \approx CD$ (*dep)

B1 For BC, CD equally inclined to Im axis

(*dep) B1 4 For E at the origin

Allow points joined by arcs, or not joined Labels not essential

B1 1 For correct equation **AEF** (in any variable) Allow factorised forms using w, exp or trig

- 4 The cube roots of 1 are denoted by 1, ω and ω^2 , where the imaginary part of ω is positive.
 - (i) Show that $1 + \omega + \omega^2 = 0$. [2]

In the diagram, ABC is an equilateral triangle, labelled anticlockwise. The points A, B and C represent the complex numbers z_1 , z_2 and z_3 respectively.

- (ii) State the geometrical effect of multiplication by ω and hence explain why $z_1 z_3 = \omega(z_3 z_2)$. [4]
- (iii) Hence show that $z_1 + \omega z_2 + \omega^2 z_3 = 0$.

OCR JAN 2011 FP3

Imagine
having a
regular n-gon
in your
complex
HOME...

[2]

4 (i) EITHER $1 + \omega + \omega^2$

= sum of roots of
$$(z^3 - 1 = 0) = 0$$

$$OR \quad \omega^3 = 1 \Rightarrow (\omega - 1)(\omega^2 + \omega + 1) = 0$$

$$\Rightarrow 1 + \omega + \omega^2 = 0 \text{ (for } \omega \neq 1)$$

OR sum of G.P.

$$1+\omega+\omega^2=\frac{1-\omega^3}{1-\omega}\left(=\frac{0}{1-\omega}\right)=0$$

OR

shown on Argand diagram or explained in terms of vectors

OR

$$1 + \operatorname{cis} \frac{2}{3} \pi + \operatorname{cis} \frac{4}{3} \pi = 1 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 0$$

(ii)

Multiplication by $\omega \Rightarrow$ rotation through $\frac{2}{3}\pi$

$$z_1 - z_3 = \overrightarrow{CA}$$
, $z_3 - z_2 = \overrightarrow{BC}$

 \overrightarrow{BC} rotates through $\frac{2}{3}\pi$ to direction of \overrightarrow{CA}

 $\triangle ABC$ has BC = CA, hence result

(iii) (ii)
$$\Rightarrow z_1 + \omega z_2 - (1 + \omega)z_3 = 0$$

$$1 + \omega + \omega^2 = 0 \Rightarrow z_1 + \omega z_2 + \omega^2 z_3 = 0$$

M1A1 2 For result shown by any correct method AG

B1 For correct interpretation of
$$\times$$
 by ω (allow 120° and omission of, or error in, \circlearrowleft)

For linking BC and CA by rotation of $\frac{2}{3}\pi$ OR ω

A1 4 For stating equal magnitudes
$$\Rightarrow$$
 AG

M1 For using
$$1 + \omega + \omega^2 = 0$$
 in (ii)
A1 2 For obtaining AG

B1

M1

AQA JAN 2010 FP2

- 8 (a) (i) Show that $\omega = e^{\frac{2\pi i}{7}}$ is a root of the equation $z^7 = 1$. (1 mark)
 - (ii) Write down the five other non-real roots in terms of ω . (2 marks)
 - (b) Show that

$$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{6} = 0$$
 (2 marks)

(c) Show that:

(i)
$$\omega^2 + \omega^5 = 2\cos\frac{4\pi}{7};$$
 (3 marks)

(ii)
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$$
. (4 marks)

MFPZ (CO	u)			
Q	Solution	Marks	Total	Comments
8(a)(1	$\left(e^{\frac{2\pi i}{7}}\right)^7 = e^{2\pi i} = 1$	B1	1	Or $z^7 = e^{2k\pi i}$ $z = e^{\frac{2k\pi i}{7}}$ $k = 1$
(ii	Roots are ω^2 , ω^3 , ω^4 , ω^5 , ω^6	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $e^{i\theta}$
(lt	Sum of roots considered = 0	M1 A1	2	$\left\{ \text{ or } \sum_{r=0}^{6} \omega^6 = \frac{\omega^7 - 1}{\omega - 1} = 0 \right.$
(c)(i	-1 ω -1 ω -1 ω	M1		
	$= e^{\frac{4\pi i}{7}} + e^{\frac{-4\pi i}{7}}$	A1		Or $\cos \frac{4\pi}{7} + i\sin \frac{4\pi}{7} + \cos \frac{4\pi}{7} - i\sin \frac{4\pi}{7}$
	$=2\cos\frac{4\pi}{7}$	A1	3	AG
(i	$\omega + \omega^6 = 2\cos\frac{2\pi}{7} ; \omega^3 + \omega^4 = 2\cos\frac{6\pi}{7}$ Using part (b)	B1,B1 M1		Allow these marks if seen earlier in the solution
	Result	A1	4	AG
	Total		12	

8 (a) Express in the form
$$re^{i\theta}$$
, where $r > 0$ and $-\pi < \theta \le \pi$:

- (i) $4(1+i\sqrt{3})$;
- (ii) $4(1-i\sqrt{3})$. (3 marks)
- (b) The complex number z satisfies the equation

$$(z^3 - 4)^2 = -48$$

Show that $z^3 = 4 \pm 4\sqrt{3}i$. (2 marks)

(c) (i) Solve the equation

$$(z^3-4)^2=-48$$

giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (5 marks)

- (ii) Illustrate the roots on an Argand diagram. (3 marks)
- (d) (i) Explain why the sum of the roots of the equation

$$(z^3-4)^2=-48$$

is zero. (1 mark)

(ii) Deduce that $\cos\frac{\pi}{9} + \cos\frac{3\pi}{9} + \cos\frac{5\pi}{9} + \cos\frac{7\pi}{9} = \frac{1}{2}$. (3 marks)

AQA JAN 2011 FP2

Imagine
having a
regular ngon in you
complex

HOME...

Q	Solution	Marks	Total	Comments
8(a)(i)	$4\left(1+i\sqrt{3}\right) = 8\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$	M1		for either $4(1+i\sqrt{3})$ or $4(1-i\sqrt{3})$ used
	$=8e^{\frac{\pi i}{3}}$	A1		If either r or θ is incorrect but the same value in both (i) and (ii) allow A1 but for θ only if it is given as $\frac{\pi}{6}$
(ii)	$4\left(1-i\sqrt{3}\right) = 8e^{\frac{-\pi i}{3}}$	A1	3	
	$z^{3} - 4 = \pm \sqrt{-48}$ $z^{3} = 4 \pm 4\sqrt{3} i$	M1		taking square root
	$z^3 = 4 \pm 4\sqrt{3} i$	A1	2	AG

AQA JAN 2013 FP2

- 8 (a) Express $-4 + 4\sqrt{3}i$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (3 marks)
 - (b) (i) Solve the equation $z^3 = -4 + 4\sqrt{3}i$, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (ii) The roots of the equation $z^3 = -4 + 4\sqrt{3}i$ are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle PQR, giving your answer in the form $k\sqrt{3}$, where k is an integer. (3 marks)

(c) By considering the roots of the equation $z^3 = -4 + 4\sqrt{3}i$, show that

$$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0 \tag{4 marks}$$

Q	Solution	Marks	Total	Comments
8(a)	r = 8	B1		
	$\tan^{-1}\pm\frac{4\sqrt{3}}{4}$ or $\pm\frac{\pi}{3}$ seen	M1		or $\frac{\pi}{6}$ marked as angle to Im axis with "vector" in second quadrant on Arg diag
	$\Rightarrow \theta = \frac{2\pi}{3}$	A1	3	$-4 + 4\sqrt{3}i = 8e^{i\frac{2\pi}{3}}$
(b)(i)	modulus of each root = 2	B1√ M1		use of De Moivre – dividing argument by 3
	$\Rightarrow \theta = -\frac{4\pi}{9}, \frac{2\pi}{9}, \frac{8\pi}{9}$	A2	4	A1 if 3 "correct" values not all in requested interval
				$2e^{-i\frac{4\pi}{9}}, 2e^{i\frac{2\pi}{9}}, 2e^{i\frac{8\pi}{9}}$
(ii)	Area = $3 \times \frac{1}{2} \times PO \times OR \times \sin \frac{2\pi}{3}$	M1		Correct expression for area of triangle <i>PQR</i>
	$=3\times\frac{1}{2}\times2\times2\times\sin\frac{2\pi}{3}$	A1		correct values of lengths in formula
	$= 3\sqrt{3}$	A1cso	3	

(c)	Sum of roots (of cubic) = 0	E1		must be stated explicitly
	Sum of 3 roots including Im terms	M1		in form $r(\cos\theta + i\sin\theta)$
	$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$	A 1		isolating real terms; correct and with "2"
	$e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9} \text{ seen earlier}$			$or \cos \frac{-4\pi}{9} = \cos \frac{4\pi}{9}$ explicitly stated to earn final A1 mark
	$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0$	A1cso	4	AG
	Total		14	

AQA JAN 2007 FP2

- 6 (a) Find the three roots of $z^3 = 1$, giving the non-real roots in the form $e^{i\theta}$, where $-\pi < \theta \le \pi$.
 - (b) Given that ω is one of the non-real roots of $z^3 = 1$, show that

$$1 + \omega + \omega^2 = 0 (2 marks)$$

(c) By using the result in part (b), or otherwise, show that:

(i)
$$\frac{\omega}{\omega + 1} = -\frac{1}{\omega}$$
; (2 marks)

(ii)
$$\frac{\omega^2}{\omega^2 + 1} = -\omega;$$
 (1 mark)

(iii)
$$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = (-1)^k 2\cos\frac{2}{3}k\pi$$
, where k is an integer. (5 marks)

Q	Solution	Marks	Total	Comments
6(a)	$1, e^{\pm \frac{2\pi i}{3}}$	M1A1	2	M1 for any method which would lead to the correct answers Accept e ⁰ or e ⁰ⁱ Also accept answers written down correctly
(b)	Any correct method Shown for one root	M1 A1	2	AG

(c)(i)	$\frac{\omega}{\omega+1} = \frac{\omega}{-\omega^2}$	M1		ie use of result in (b)	
	$=-\frac{1}{\omega}$	A1	2	AG	
(ii)	$\frac{\omega^2}{\omega^2 + 1} = -\omega$	A 1	1	AG	
(iii)	$\left(\frac{\omega}{\omega+1}\right)^k + \left(\frac{\omega^2}{\omega^2+1}\right)^k = \left(-\frac{1}{\omega}\right)^k + \left(-\omega\right)^k$	M1A1			
	Use of $\omega = e^{\frac{2\pi i}{3}}$	m1			
	$= \left(-1\right)^k \left(e^{\frac{-2k\pi i}{3}} + e^{\frac{2k\pi i}{3}}\right)$	A 1			
	$= \left(-1\right)^k 2\cos\frac{2k\pi}{3}$	A1	5	AG	
	Total		12		

AQA JAN 2010 Q8

- 8 (a) (i) Show that $\omega = e^{\frac{2\pi i}{7}}$ is a root of the equation $z^7 = 1$. (1 mark)
 - (ii) Write down the five other non-real roots in terms of ω . (2 marks)
 - (b) Show that

$$1 + \omega + \omega^{2} + \omega^{3} + \omega^{4} + \omega^{5} + \omega^{6} = 0$$
 (2 marks)

(c) Show that:

(i)
$$\omega^2 + \omega^5 = 2\cos\frac{4\pi}{7}$$
; (3 marks)

(ii)
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$$
. (4 marks)

IFP2 (cont)				
Q	Solution	Marks	Total	Comments
8(a)(i)	$\left(e^{\frac{2\pi i}{7}}\right)^7 = e^{2\pi i} = 1$	B1	1	Or $z^7 = e^{2k\pi i}$ $z = e^{\frac{2k\pi i}{7}}$ $k = 1$
(ii)	Roots are ω^2 , ω^3 , ω^4 , ω^5 , ω^6	M1A1	2	OE; M1A0 for incomplete set SC B1 for a set of correct roots in terms of $e^{i\theta}$
(b)	Sum of roots considered = 0	M1 A1	2	$\begin{cases} \text{ or } \sum_{r=0}^{6} \omega^6 = \frac{\omega^7 - 1}{\omega - 1} = 0 \end{cases}$
(c)(i)	$\omega^2 + \omega^5 = e^{\frac{4\pi i}{7}} + e^{\frac{10\pi i}{7}}$	M1		
	$=e^{\frac{4\pi i}{7}}+e^{\frac{-4\pi i}{7}}$	A1		Or $\cos \frac{4\pi}{7} + i \sin \frac{4\pi}{7} + \cos \frac{4\pi}{7} - i \sin \frac{4\pi}{7}$
	$=2\cos\frac{4\pi}{7}$	A1	3	AG
(ii)	$\omega + \omega^6 = 2\cos\frac{2\pi}{7}$; $\omega^3 + \omega^4 = 2\cos\frac{6\pi}{7}$	B1,B1		Allow these marks if seen earlier in the solution
	Using part (b)	M1		
	Result	A1	4	AG
	Total		12	

AQA JAN 2013 FP2

- 8 (a) Express $-4 + 4\sqrt{3}i$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (3 marks)
 - (b) (i) Solve the equation $z^3 = -4 + 4\sqrt{3}i$, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (ii) The roots of the equation $z^3 = -4 + 4\sqrt{3}i$ are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle PQR, giving your answer in the form $k\sqrt{3}$, where k is an integer. (3 marks)

(c) By considering the roots of the equation $z^3 = -4 + 4\sqrt{3}i$, show that

$$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0 \tag{4 marks}$$

WIFF2	(cont)	-		
Q	Solution	Marks	Total	Comments
8(a)	$tan^{-1} \pm \frac{4\sqrt{3}}{4} or \pm \frac{\pi}{3} seen$	B1 M1		or $\frac{\pi}{6}$ marked as angle to Im axis with "vector" in second quadrant on Arg diag
	$\Rightarrow \theta = \frac{2\pi}{3}$	A1	3	$-4 + 4\sqrt{3}i = 8e^{i\frac{2\pi}{3}}$
(b)(i)	modulus of each root = 2 $\Rightarrow \theta = -\frac{4\pi}{9}, \frac{2\pi}{9}, \frac{8\pi}{9}$	B1√ M1 A2	4	use of De Moivre – dividing argument by 3 A1 if 3 "correct" values not all in requested interval $2e^{-i\frac{4\pi}{9}}$, $2e^{i\frac{2\pi}{9}}$, $2e^{i\frac{8\pi}{9}}$
(ii)	Area = $3 \times \frac{1}{2} \times PO \times OR \times \sin \frac{2\pi}{3}$ = $3 \times \frac{1}{2} \times 2 \times 2 \times \sin \frac{2\pi}{3}$ = $3\sqrt{3}$	M1 A1 A1cso	3	Correct expression for area of triangle <i>PQR</i> correct values of lengths in formula

$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$ $e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9} \text{ seen earlier}$ A1 isolating real terms; correct and or $\cos\frac{-4\pi}{9} = \cos\frac{4\pi}{9} = \cos\frac{4\pi}{9}$ explicitly earn final A1 mark		9 9 9 Total		14	
$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$ $e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9} \text{ seen earlier}$ A1 isolating real terms; correct and or $\cos\frac{-4\pi}{9} = \cos\frac{4\pi}{9} = \cos\frac{4\pi}{9}$ explicitly		$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0$	Alcso	4	AG
		$e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9} \text{ seen earlier}$			or $\cos \frac{-4\pi}{9} = \cos \frac{4\pi}{9}$ explicitly stated to earn final A1 mark
Julii Ol J 1000 metading ini termo		$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$	A 1		isolating real terms; correct and with "2"
(c) Sum of roots (of cubic) = 0 E1 must be stated explicitly Sum of 3 roots including Im terms M1 in form $r(\cos \theta + i \sin \theta)$	(c)	Sum of roots (of cubic) = 0 Sum of 3 roots including Im terms	E1 M1		must be stated explicitly in form $r(\cos \theta + i \sin \theta)$

MEI JUNE 2007 FP2

- 2 (a) Use de Moivre's theorem to show that $\sin 5\theta = 5 \sin \theta 20 \sin^3 \theta + 16 \sin^5 \theta$. [5]
 - (b) (i) Find the cube roots of -2 + 2j in the form $re^{j\theta}$ where r > 0 and $-\pi < \theta \le \pi$. [6]

These cube roots are represented by points A, B and C in the Argand diagram, with A in the first quadrant and ABC going anticlockwise. The midpoint of AB is M, and M represents the complex number w.

- (ii) Draw an Argand diagram, showing the points A, B, C and M.
- (iii) Find the modulus and argument of w.
- (iv) Find w^6 in the form a + bj.

[3]

[2]

[2]

2 (a)	$(\cos\theta + j\sin\theta)^5$		
	$=c^5+5jc^4s-10c^3s^2-10jc^2s^3+5cs^4+js^5$	M1	
	Equating imaginary parts	M1	
	$\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$	A1	
	$=5(1-s^2)^2s-10(1-s^2)s^3+s^5$	M1	
	$=5s-10s^3+5s^5-10s^3+10s^5+s^5$		
	$=5\sin\theta-20\sin^3\theta+16\sin^5\theta$	A1 ag	
		5	
(b)(i)	$\left -2 + 2j \right = \sqrt{8}$, $\arg(-2 + 2j) = \frac{3}{4}\pi$ $r = \sqrt{2}$ $\theta = \frac{1}{4}\pi$	B1B1	Accept 2.8; 2.4, 135°
	$r = \sqrt{2}$	B1 ft	(Implies B1 for $\sqrt{8}$)
	$\theta = \frac{1}{4}\pi$	B1 ft	One correct (Implies B1 for $\frac{3}{4}\pi$)
	$\theta = \frac{11}{12}\pi, -\frac{5}{12}\pi$	M1	Adding or subtracting $\frac{2}{3}\pi$
	12 " 12 "	A1	Accept $\theta = \frac{1}{4}\pi + \frac{2}{3}k\pi$, $k = 0, 1, -1$
		6	

MEI JAN 2009 FP2

- 2 (i) Write down the modulus and argument of the complex number $e^{j\pi/3}$. [2]
 - (ii) The triangle OAB in an Argand diagram is equilateral. O is the origin; A corresponds to the complex number $a = \sqrt{2}(1+j)$; B corresponds to the complex number b.
 - Show A and the two possible positions for B in a sketch. Express a in the form $re^{j\theta}$. Find the two possibilities for b in the form $re^{j\theta}$. [5]
 - (iii) Given that $z_1 = \sqrt{2}e^{j\pi/3}$, show that $z_1^6 = 8$. Write down, in the form $re^{j\theta}$, the other five complex numbers z such that $z^6 = 8$. Sketch all six complex numbers in a new Argand diagram. [6]

Let
$$w = z_1 e^{-j\pi/12}$$
.

- (iv) Find w in the form x + jy, and mark this complex number on your Argand diagram. [3]
- (v) Find w^6 , expressing your answer in as simple a form as possible. [2]

2 (i)	Modulus = 1	B1	Must be separate
	Argument = $\frac{\pi}{2}$	B1	Accept 60°, 1.05°
	3	2	
(ii)	B 2 [A]		G2: A in first quadrant, argument $\approx \frac{\pi}{4}$
			B in second quadrant, same mod
	\times		B' in fourth quadrant, same mod
			Symmetry
	2 B		G1: 3 points and at least 2 of above, or
			B, B' on axes, or BOB' straight
	/	G2,1,0	line, or BOB' reflex
	$a = 2e^{\frac{j\pi}{4}}$	В1	Must be in required form
	$a = 2 e^{4}$		(accept $r = 2$, $\theta = \pi/4$)
$a = b = \pi_{\perp} \pi$		3.61	Rotate by adding (or subtracting) $\pi/3$ to
	$\frac{\log v - \frac{1}{4} \cdot \frac{1}{3}}{1}$	M1	(or from) argument. Must be $\pi/3$
	arg $b = \frac{\pi}{4} \pm \frac{\pi}{3}$ $b = 2e^{-\frac{j\pi}{12}}, 2e^{\frac{7j\pi}{12}}$	Α 1 Ω	Both. Ft value of r for a. Must be in
$b = 2e^{-12}$, $2e^{-12}$		A1ft	required form, but don't penalise twice
		5	

MEI JUNE 2010 FP2

2 (a) Given that $z = \cos \theta + j \sin \theta$, express $z^n + \frac{1}{z^n}$ and $z^n - \frac{1}{z^n}$ in simplified trigonometric form.

Hence find the constants A, B, C in the identity

$$\sin^5 \theta = A \sin \theta + B \sin 3\theta + C \sin 5\theta.$$
 [5]

- (b) (i) Find the 4th roots of -9j in the form $re^{j\theta}$, where r > 0 and $0 < \theta < 2\pi$. Illustrate the roots on an Argand diagram. [6]
 - (ii) Let the points representing these roots, taken in order of increasing θ , be P, Q, R, S. The mid-points of the sides of PQRS represent the 4th roots of a complex number w. Find the modulus and argument of w. Mark the point representing w on your Argand diagram. [5]

2 (a)
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
, $z^n - \frac{1}{z^n} = 2j\sin n\theta$

$$\left(z - \frac{1}{z}\right)^5 = z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$$

$$= z^5 - \frac{1}{z^5} - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$$

$$\Rightarrow 32j \sin^5\theta = 2j \sin 5\theta - 10j \sin 3\theta + 20j \sin \theta$$

$$\Rightarrow \sin^5 \theta = \frac{1}{16} \sin 5\theta - \frac{5}{16} \sin 3\theta + \frac{5}{8} \sin \theta$$
$$A = \frac{5}{8}, B = -\frac{5}{16}, C = \frac{1}{16}$$

B1

Both

RHS

M1

Expanding $\left(z - \frac{1}{z}\right)^5$

M1

Introducing sines (and possibly cosines) of multiple angles

A1

A1ft

Division by 32(j)

MEI JUNE 2011 FP2

2 (a) Use de Moivre's theorem to find expressions for $\sin 5\theta$ and $\cos 5\theta$ in terms of $\sin \theta$ and $\cos \theta$.

Hence show that, if $t = \tan \theta$, then

$$\tan 5\theta = \frac{t(t^4 - 10t^2 + 5)}{5t^4 - 10t^2 + 1}.$$
 [6]

(b) (i) Find the 5th roots of $-4\sqrt{2}$ in the form $re^{j\theta}$, where r > 0 and $0 \le \theta < 2\pi$. [4]

These 5th roots are represented in the Argand diagram, in order of increasing θ , by the points A, B, C, D, E.

(ii) Draw the Argand diagram, making clear which point is which. [2]

The mid-point of AB is the point P which represents the complex number w.

- (iii) Find, in exact form, the modulus and argument of w. [3]
- (iv) w is an nth root of a real number a, where n is a positive integer. State the least possible value of n and find the corresponding value of a. [3]

_	197	90		
	2 (a)	$\cos 5\theta + j \sin 5\theta = (\cos \theta + j \sin \theta)^{5}$ = $c^{5} + 5c^{4}js - 10c^{3}s^{2} - 10c^{2}js^{3} + 5cs^{4} + js^{5}$	M1	Expanding
			M1	Separating real and imaginary parts. Dependent on first M1
Н		$\Rightarrow \cos 5\theta = c^5 - 10c^3s^2 + 5cs^4$	A1	Alternative: $16c^5 - 20c^3 + 5c$
		$\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$	A1	Alternative: $16s^5 - 20s^3 + 5s$
		$\Rightarrow \tan 5\theta = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$		
		$=\frac{5t-10t^3+t^5}{1-10t^2+5t^4}$	M1	Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and simplifying
		$=\frac{t\left(t^4-10t^2+5\right)}{5t^4-10t^2+1}$	A1 (ag)	
L			6	
	(b)(i)	$arg(-4\sqrt{2}) = \pi$		
		\Rightarrow fifth roots have $r = \sqrt{2}$	B1	
		and $\theta = \frac{\pi}{5}$	B1	No credit for arguments in degrees
		$\Rightarrow z = \sqrt{2}e^{\frac{1}{5}j\pi}, \sqrt{2}e^{\frac{3}{5}j\pi}, \sqrt{2}e^{j\pi}, \sqrt{2}e^{\frac{7}{5}j\pi}, \sqrt{2}e^{\frac{9}{5}j\pi}$	M1	Adding (or subtracting) $\frac{2\pi}{5}$
		_ , ,, ,, ,, ,,	A1	All correct. Allow $-\pi \le \theta < \pi$

MEI JUNE 2012 FP2

2 (a) (i) Show that

$$1 + e^{j2\theta} = 2\cos\theta(\cos\theta + j\sin\theta).$$

(ii) The series C and S are defined as follows.

$$C = 1 + \binom{n}{1} \cos 2\theta + \binom{n}{2} \cos 4\theta + \dots + \cos 2n\theta$$

$$S = \binom{n}{1}\sin 2\theta + \binom{n}{2}\sin 4\theta + \dots + \sin 2n\theta$$

By considering C + jS, show that

$$C = 2^n \cos^n \theta \cos n\theta,$$

and find a corresponding expression for *S*.

- (b) (i) Express $e^{j2\pi/3}$ in the form x + jy, where the real numbers x and y should be given exactly. [1]
 - (ii) An equilateral triangle in the Argand diagram has its centre at the origin. One vertex of the triangle is at the point representing 2 + 4j. Obtain the complex numbers representing the other two vertices, giving your answers in the form x + jy, where the real numbers x and y should be given exactly.
 - (iii) Show that the length of a side of the triangle is $2\sqrt{15}$.

Imagine
having a
regular ngon in your
complex
HOME...

[2]

[7]

[2]

Question		on	Answer	Marks	Guidance	
2	(a)	(iii)	$\cos^4 \theta = \frac{3}{8} + \frac{1}{2} (2\cos^2 \theta - 1) + \frac{1}{8} \cos 4\theta$	M1	Using (ii), obtaining $\cos 4\theta$ and expressing $\cos 2\theta$ in terms of $\cos^2\theta$	Condone $\cos 2\theta = \pm 1 \pm 2 \cos^2 \theta$
			$\Rightarrow \cos^4 \theta = \cos^2 \theta - \frac{1}{8} + \frac{1}{8} \cos 4\theta$ $\Rightarrow \cos 4 \theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$	A1 [2]	c.a.o.	
2	(b)	(i)	$z = 4e^{\frac{j\pi}{3}} \text{ and } w^2 = z : \text{ let } w = re^{j\theta} \Rightarrow w^2 = r^2 e^{2j\theta}$ $\Rightarrow r^2 = 4 \Rightarrow r = 2$ and $\theta = \frac{\pi}{6}, \frac{7\pi}{6}$	B1 B1B1	Or $-\frac{5\pi}{6}$	Condone $r = \pm 2$ Award B2 for $\pi \left(k + \frac{1}{6} \right)$
			w_1 w_2	B1 B1 [5]	Roots with approx. equal moduli and approx. correct argument Dependent on first B1 z in correct position	Ignore annotations and scales $\leq \pi/4$ Modulus and argument bigger

	/	/	/	L-1		
2	(b)	(ii)	$z = 4e^{\frac{j\pi}{3}} \Rightarrow z^n = 4^n e^{\frac{j\pi n}{3}}$ so real if $\frac{\pi n}{3} = \pi \Rightarrow n = 3$	B1		Ignore other larger values
			Imaginary if $\frac{\pi n}{3} = \frac{\pi}{2} + k\pi \Rightarrow n = \frac{3}{2} + 3k$	M1	$\cos\frac{\pi n}{3} = 0 \text{ or } \frac{\pi n}{3} = \frac{\pi}{2} \dots$	
			which is not an integer for any k	A1(ag)	An argument which covers the positive and negative im. axis	
			$w_1 = 2e^{\frac{j\pi}{6}} \Rightarrow w_1^3 = 8e^{\frac{j\pi}{2}} = 8j$	M1	Attempting their w^3 in any form	Must deal with mod and arg
			$w_2 = 2e^{\frac{7j\pi}{6}} \Rightarrow w_2^3 = 8e^{\frac{7j\pi}{2}} = -8j$	A1	8j, -8j	
				[5]		
						/ /