Collision
Coefficient of restitution, second time.

10 Three particles, A, B and C, of masses $m, k m$ and $3 m$ respectively, are initially at rest lying in a straight line on a smooth horizontal surface. Then A is projected towards B at speed u. After the collision, B collides with C. The coefficient of restitution between A and B is $\frac{1}{2}$ and the coefficient of restitution between B and C is $\frac{1}{4}$.
(i) Find the range of values of k for which A and B collide for a second time.
(ii) Given that $k=1$ and that B and C are initially a distance d apart, show that the time that elapses between the two collisions of A and B is $\frac{60 d}{13 u}$.
[STEP II 2006 Question 10 (Pure)]

$$
k m y=-k m p+3 m q
$$

$$
\frac{p+q}{y}=\frac{1}{4}
$$

$$
p+q=\frac{1}{4} y
$$

$$
-k p+3 q=k y
$$

$$
\frac{-3 p+3 q=\frac{3}{4} y}{p(3+k)=y\left(\frac{3}{4}-k\right)}
$$

$$
p=\frac{y\left(\frac{3}{4}-k\right)}{3+k}
$$

collision occur of:

$$
\begin{aligned}
& p>x \\
& \frac{\frac{3 u}{2(k+1)}\left(\frac{3}{4}-k\right)}{3+k} \rightarrow \frac{\left(\frac{1}{2} k-1\right)(n)}{k+1} \\
& \frac{3}{2}\left(\frac{3}{4}-k\right)>\left(\frac{1}{2} k-1\right)(3+k) \\
& \frac{9}{8}-\frac{3}{2} k>\frac{3}{2} k-3+\frac{k^{2}}{2}-k \\
& 0>\frac{k^{2}}{2}+\frac{1}{2} k+\frac{3}{2} k-\frac{24}{8}-\frac{9}{8} \\
& 07 \frac{k^{2}}{2}+\frac{4 k}{2}-\frac{33}{8} \\
& 0>4 k^{2}+16 k-33 \\
& (2 k+11)(2 k-3)<0
\end{aligned}
$$

$$
\begin{aligned}
& m u=-m x+k m y \\
& e=\frac{x+y}{u} \\
& -x+k y=n \\
& x+y=\ln -(2) \\
& y(k+1)=u(e+1) \quad k x+k y=k e n \\
& y=\frac{n(e+1)}{k+1}, \quad x(k+1)=n(k e-1) \\
& x=\frac{u(k e-1)}{k+1} \\
& y=\frac{\frac{3}{2} u}{k+1}=\frac{3 u}{2(k+1)} \\
& x=\frac{\left(\frac{1}{2} k-1\right) u}{k+1}
\end{aligned}
$$

Coefficient of restitution, second time.
10 Three particles, A, B and C, of masses $m, k m$ and $3 m$ respectively, are initially at rest lying in a straight line on a smooth horizontal surface. Then A is projected towards B at speed u.

After the collision, B collides with C. The coefficient of restitution between A and B is $\frac{1}{2}$ and the coefficient of restitution between B and C is $\frac{1}{4}$.
(i) Find the range of values of k for which A and B collide for a second time.
(ii) Given that $k=1$ and that B and C are initially a distance d apart, show that the time that elapses between the two collisions of A and B is $\frac{60 d}{13 u}$.
[STEP II 2006 Question 10 (Pure)]

$$
\begin{gathered}
y=\frac{\frac{3}{2} u}{k+1}=\frac{3 u}{2(k+1)} \quad x=\frac{\left(\frac{1}{2} k-1\right) u}{k+1} \quad p=\frac{y\left(\frac{3}{4}-k\right)}{3+k} \\
y=\frac{3 n}{4} \quad x=\frac{\frac{-1}{2}}{2} u=\frac{-1}{4 n} \quad p=\frac{\frac{1}{4}}{4} y=\frac{-1}{16 y}=\frac{-3 n}{64} \\
\rightarrow
\end{gathered}
$$

$S=n t$ for (B)

$$
\begin{aligned}
& d=\frac{3}{4} n t \\
& \frac{4 d}{3 n}=t
\end{aligned}
$$

$t_{1}+t_{2}$

$$
\begin{aligned}
& \Rightarrow \\
& \frac{4 d}{3 u}+\frac{128}{39} u \\
& \frac{52+128}{39} \frac{d}{u} \\
& =\frac{180}{39} \frac{d}{u} \\
& =\frac{60}{13} \frac{d}{u 11}
\end{aligned}
$$

$S=u t$ for (A)
which means:

$$
\begin{aligned}
& S=\frac{1}{4 n}\left(\frac{4 d}{3 n}\right) \\
& S=\frac{d}{3} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { (A) } \\
\stackrel{2 d}{3} \\
\frac{1}{4} u \\
=\frac{16 u}{64} \\
S= \\
=\frac{2 d}{3} \quad \text { relative speed }=\frac{3 u}{64} \\
\quad S=u t_{2} \\
\frac{2 d}{3}
\end{array}=\frac{13 u}{64} \quad t_{2} \quad t_{2}=\frac{128 d}{39 u}
\end{aligned}
$$

