Collision

Coefficient of restitution, second time.

- Three particles, A, B and C, of masses m, km and 3m respectively, are initially at rest lying in a straight line on a smooth horizontal surface. Then A is projected towards B at speed u. After the collision, B collides with C. The coefficient of restitution between A and B is $\frac{1}{2}$ and the coefficient of restitution between B and C is $\frac{1}{4}$.
 - (i) Find the range of values of k for which A and B collide for a second time.
 - (ii) Given that k=1 and that B and C are initially a distance d apart, show that the time that elapses between the two collisions of A and B is $\frac{60d}{13u}$.

restu A M KMB C Y Y

[STEP II 2006 Question 10 (Pure)]

$$mu = -m\chi + kmy$$

$$e = \frac{\chi + y}{u}$$

$$-\chi + ky = u$$

$$\chi + y = eu$$

$$y(k+1) = u(e+1) kxtky = ken$$

$$y = \frac{u(e+1)}{k+1} x(k+1) = u(ke-1)$$

$$x = \frac{u(ke-1)}{k+1}$$

$$y = \frac{3u}{k+1} = \frac{3u}{2(k+1)} x = \frac{(\frac{1}{2}k-1)u}{k+1}$$

Collision occur it:

Pox

$$\frac{3^{N}}{3^{1}(k+1)} \left(\frac{2}{4}-k\right) \times \left(\frac{1}{2}k-1\right) \left(N\right) \times \left(\frac{1}{2}k-1\right) \left(\frac{1}{3}+k\right) \times \left(\frac{1}$$

06-S2-Q10

Collision

Coefficient of restitution, second time.

- Three particles, A, B and C, of masses m, km and 3m respectively, are initially at rest lying in a straight line on a smooth horizontal surface. Then A is projected towards B at speed u. After the collision, B collides with C. The coefficient of restitution between A and B is $\frac{1}{2}$ and the coefficient of restitution between B and C is $\frac{1}{4}$.
 - (i) Find the range of values of k for which A and B collide for a second time.
 - (ii) Given that k=1 and that B and C are initially a distance d apart, show that the time that elapses between the two collisions of A and B is $\frac{60d}{13u}$.

AB 00 4 00 0

[STEP II 2006 Question 10 (Pure)]

S=nt for B

$$d=\frac{2}{4}nt$$
 $\frac{4d}{3n}=t$

S= ut for A

 $S=\frac{4}{3}$

Which man;

 $S=\frac{3}{3}$
 $S=\frac{3}{4}$

Which man;

 $S=\frac{16y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{3y}{64}$
 $S=\frac{128d}{39u}$