Further Mathematics A

Proof by Mathematical Induction (OCR) Andrew Chan

Please note that you may see slight differences between this paper and the original.

Candidates answer on the Question paper.

OCR supplied materials:

Additional resources may be supplied with this paper.

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: Not set

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions, unless your teacher tells you otherwise.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Where space is provided below the question, please write your answer there.
- You may use additional paper, or a specific Answer sheet if one is provided, but you must clearly show your candidate number, centre number and question number(s).

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with either a pencil or an asterisk. In History and Geography a *Quality of extended response* question is marked with an asterisk, while a pencil is used for questions in which *Spelling, punctuation and grammar and the use of specialist terminology* is assessed.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 96.
- The total number of marks may take into account some 'either/or' question choices.

- 1 The sequence $u_1, u_2, u_3, ...$ is defined by $u_n = 5^n + 2^{n-1}$.
 - (i) Find u_1 , u_2 and u_3 .
 - (ii) Hence suggest a positive integer, other than 1, which divides exactly into every term of the sequence.
- [1]

[2]

(iii) By considering $u_{n+1} + u_n$, prove by induction that your suggestion in part (ii) is correct.

[5]

2

The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$. Prove by induction that, for $n \ge 1$,

$$\mathbf{M}^n = \begin{pmatrix} 2^n & 2^{n+1} - 2\\ 0 & 1 \end{pmatrix}.$$

3

Prove by induction that, for $n \Box 1$, $\sum_{r=1}^{n} r(3r+1) = n(n+1)^2$.

I	61
I	U

[6]

5 A sequence is defined by $a_1 = 6$ and $a_{n+1} = 5a_n$ for $n \ge 1$.

Prove by induction that for all integers
$$n \ge 1$$
, $a_n = \frac{11 \times 5^{n-1} + 1}{2}$. [5]

Three matrices, **A**, **B** and *C*, are given by $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 & 0 \\ -2 & 2 \end{pmatrix}$ where *a* is a constant.

(a) Using A, B and C in that order demonstrate explicitly the associativity property of matrix multiplication.[4]

For a certain value of *a*,
$$\mathbf{A}\begin{pmatrix} x \\ y \end{pmatrix} = 3\begin{pmatrix} x \\ y \end{pmatrix}$$
.

(c) Find

- *y* in terms of *x*,
- the value of *a*.

© OCR 2021. You may photocopy this page.

[3]

7 Prove by induction that, for all positive integers n, $7^n + 3^{n-1}$ is a multiple of 4.

8

M is the matrix
$$\begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix}$$
.

Prove that $\mathbf{M}^{n} = \begin{pmatrix} 1 & 3(2^{n+1}-2) \\ 0 & 2^{n} \end{pmatrix}$, for any positive integer *n*.

[6]

9 Prove by induction that, for all positive integers *n*,

$$\sum_{r=1}^{n} \frac{5-4r}{5^r} = \frac{n}{5^n} \,.$$
[5]

10 Prove by induction that $n! \ge 6n$ for $n \ge 4$.

[5]

11
Prove by induction that, for
$$n \ge 1$$
, $\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1}$.

[5]

12 In this question you must show detailed reasoning.A sequence of vectors a₁, a₂, a₃, ... is defined by

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

•

(a) Prove by induction that
$$\mathbf{a}_n = \left(-\frac{7}{8}\right)^{n-1} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
. for all integers $n \ge 1$.

[8]

(b) Use an algebraic method to find the smallest value of *n* such that $|\mathbf{a}_n| < 0.001$.

13 Prove by mathematical induction that, for all integers $n \ge 1$, $n^5 - n$ is divisible by 5.

- 14 The 2 × 2 matrix A represents a transformation T which has the following properties.
 - The image of the point (0, 1) is the point (3, 4).
 - An object shape whose area is 7 is transformed to an image shape whose area is 35.
 - T has a line of invariant points.
 - (a) Find a possible matrix for A.

[8]

The transformation S is represented by the matrix **B** where $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$.

(b) Find the equation of the line of invariant points of S.

(c) Show that any line of the form y = x + c is an invariant line of S.

15 The sequence u_1, u_2, u_3, \dots is defined by

 $u_1 = 5$ and $u_{n+1} = 3u_n + 2$ for $n \square 1$.

Prove by induction that $u_n = 2 \times 3^n - 1$.

[4]

[2]

[3]

END OF QUESTION PAPER

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
1		i	6 27	B1	Obtain correct values	
		i	129	B1	Obtain 3 rd correct value	
					Examiner's Comments	
					Most candidates found the first 3 terms correctly and deduced a correct value for (ii) from their values.	
		ii	3	B1ft	State a correct value	
		iii	$5^{n+1}+2^n$	B1	Correct expression for u_{n+1} seen	Any letter, usually <i>k</i> or <i>n</i>
		iii		M1	Attempt to factorise u_{n+1} + u_n	Must deal with powers of 5 and 2
		iii		A1	Obtain correct simplified answer	e. g. 6 × 5 ^{<i>n</i>} + 3 × 2 ^{<i>n</i>-1}
		iii		A1	Clear explanation why u_{n+1} is divisible by 3	Not $u_{n+1} + u_n$ divisible by 3
		iii		B1	Clear statement of induction process	Provided other 4 marks earned
					Examiner's Comments	
					Some candidates tried to prove directly that u_{n+1} has a divisor of 3, with limited success. Those who showed that $u_{n+1} + u_n$ has a divisor of 3, then failed to explain clearly how this led to u_{n+1} having a divisor of 3.	
			Total	8		
2				B1	Establish result true for <i>n</i> = 1 or <i>n</i> = 2	
				M1	Multiply M and M ^k , either order	
			$2(2^{k+1}-2)+2$ or $2^{k+1}+2^{k+1}-2$	A1	Obtain correct element	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
				A1	Obtain other 3 correct elements	
				A1	Obtain $2^{k+2} - 2$ convincingly	
				B1	Specific statement of induction conclusion, provided 5/5 earned so far and verified for $n = 1$ Examiner's Comments This was one of the less well-attempted questions. A significant minority thought that the induction step required the addition of M ^k and M . Many failed to show sufficient working either in establishing the validity when $n = 1$, or in obtaining the elements in M ^{k+1} . Centres should remind candidates of this, as well as the need for a clear statement of the induction conclusion.	
			Total	6		

Qu	estior	า	Answer/Indicative content	Marks	Part marks and guidance
3				B1	Show sufficient working to verify result true when $n = 1$
			$k(k + 1)^{2} + (k + 1)(3k + 4)$	M1*	Add next term in series
				DM1	Attempt to factorise their expression
			$(k + 1)(k + 2)^2$	A1	Sufficient working to obtain this correct answer
				B1	Clear statement of induction process, provided previous 4 marks earned
					Examiner's Comments
					This was not done particularly well. Most could establish the truth of the result for $n = 1$, but then did not add on correct $(k + 1)$ th term, or omitted brackets and so obtained an expression that could not be simplified. Those who had a correct expression often showed insufficient working to justify the truth for $k + 1$. Many lost the final mark by not giving a clear statement of how induction works.
			Total	5	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance			
4			Let $n = 4$, then $4! = 24$ and $2^4 = 16$ so $4!$ $>2^4$ Assume true for $n = r$ $r! > 2^r$ for $r \ge 4$ Then for $n = r + 1$ $(r + 1)! = (r + 1) \times r! > (r + 1)$ $\times 2^r$ by assumption Since $r + 1 > 2$, $(r + 1) \times 2^r$ $> 2 \times 2^r = 2^{r+1}$ so $(r + 1)! > 2^{r+1}$ If true for r then true for $r + 1$. Hence, given basis case, the statement is true for all positive integers.	B1(AO2. 1) M1(AO2. 1) M1(AO1. 1) E1(AO2. 2a) E1(AO2. 4) [5]	Basis case for proof by induction Assumption Add next statement Sufficient working to establish true for <i>r</i> + 1 Clear conclusion for induction process	Must state that <i>r</i> + 1 > 2 oe A <i>formal</i> proof is required for full marks Accept other <i>complete</i> methods		
			Total	5				

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
5			Base case, <i>n</i> = 1,	B1 (AO2.1)			
			$a_1 = \frac{11 \times 5^0 + 1}{2} = 6$ Assume true for $n = k$	M1 (AO2.1)	Statement of inductive hypothesis		
			$\Rightarrow a_k = \frac{11 \times 5^{k-1} + 1}{2}$	M1 (AO2.2a)	Use of both recurrence relation for		
			The $a_{k+1} = 5a_k - 2 = 5\left(\frac{11 \times 5^{k-1} + 1}{2}\right) - 2$ = $\left(\frac{11 \times 5^k + 5}{2}\right) - 2 = \left(\frac{11 \times 5^k + 1 + 4}{2}\right) - 2$ n = $\left(\frac{11 \times 5^k + 1}{2}\right) + 2 - 2 = \frac{11 \times 5^{(k+1)-1} + 1}{2}$	A1 (AO2.5)	terms of a_k and also inductive hypothesis in attempt to derive		
			So if true for $n = k$ then true also for $n = k + 1$.	E1 (AO2.4)	required form		
			But since it is true for $n = 1$ then it must be true for all integers $n \ge 1$.	[5]			
			Total	5			

Question	1	Answer/Indicative content	Marks	Part marks and guidance
6	a	$\mathbf{AB} = \begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 1 \\ 2a - 4 & -a - 1 \end{pmatrix}$ $(\mathbf{AB})\mathbf{C} = \begin{pmatrix} 10 & 1 \\ 2a - 4 & -a - 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ -2 & 2 \end{pmatrix}$ $= \begin{pmatrix} 48 & 2 \\ 12a - 18 & -2a - 2 \end{pmatrix}$ $\mathbf{BC} = \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 12 & -2 \\ 18 & 2 \end{pmatrix}$ $\mathbf{A}(\mathbf{BC}) = \begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix} \begin{pmatrix} 12 & -2 \\ 18 & 2 \end{pmatrix}$ $= \begin{pmatrix} 48 & 2 \\ 12a - 18 & -2a - 2 \end{pmatrix} = (\mathbf{AB})\mathbf{C} \text{ (which demonstrates associativity of matrix multiplication)}$	M1 (AO 3.1a) A1 (AO 2.1) M1 (AO 1.1) A1 (AO 2.1)	Finding AB (or BC) Finding (AB)C (or A(BC)) Finding BC (or AB) Correct final matrix and etament
				of equality
			[4]	
	b	$\mathbf{AC} = \begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 5a+2 & -2 \end{pmatrix}$ $\mathbf{CA} = \begin{pmatrix} 5 & 0 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 2a-2 & -6 \end{pmatrix} \neq \mathbf{AC}$ (so matrix multiplication is not commutative)	M1 (AO 1.1) A1 (AO 2.1)	Finding AC (or CA) Finding the other and statement of non- equality
			[2]	
	С	$\begin{pmatrix} 1 & 2 \\ a & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2y \\ ax-y \end{pmatrix}$ $x+2y = 3x \Longrightarrow y \equiv x$ $ax - y \equiv 3y \text{ and } y \equiv x \Longrightarrow a \equiv 4$	M1 (AO 3.1a) A1 (AO 2.2a) A1 (AO 2.2a) [3]	Multiplying the vector into the matrix using the correct procedure
		Total	9	

Qı	uestion	Answer/Indicative content	Marks	Part marks a	nd guidance
7		Base case: For $n = 1, 7^{n} + 3^{n-1} = 7+1 = 8$ which is a mulitple of 4.	B1 (AO 2.1)		
		Assume that $f(k) = 7^k + 3^{k-1} = 4\lambda$ for some integer, λ	M1 (AO 2.1)	Alternatively: $f(k+1) = 7^{k+1} + 3^k = 7.7^k + 10^{k+1}$	
		$f(k+1) = 7^{k+1} + 3^{k} = 7.7^{k} + (7)^{k-1}$ $= 7f(k) - 4.3^{k-1} = 7.4\lambda - 4.3^{k-1}$ $= 4(7\lambda - 3^{k-1}) = 4\lambda'$	M1 (AO 2.1) A1 (AO 2.5)	$3.3^{k-1} = 7(4k-3^{k-1}) + 3.3^{k-1} = \dots$	
		Where λ ' is an integer because λ is and so rhs is a multiple of 4.	A1 (AO 2.2a)		
		So if true for $n = k$, true also for $n = k + 1$. But it is true for $n = 1$ Therefore true for all positive integers	[5]		
		Total	5		

Question	Answer/Indicative content	Marks	Part marks and guidance		
8	$\mathbf{M}^{1} = \begin{pmatrix} 1 & 3(2^{1+1} - 2) \\ 0 & 2^{1} \end{pmatrix} = \begin{pmatrix} 1 & 3 \times 2 \\ 0 & 2 \end{pmatrix}$ $= \begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix} = \mathbf{M}$	B1(AO3. 1a)	Full details must be shown.	DR: Detailed reasoning required for this question	
	Assume true for $n = k$ ie $\mathbf{M}^{k} = \begin{pmatrix} 1 & 3(2^{k+1} - 2) \\ 0 & 2^{k} \end{pmatrix}.$ $\mathbf{M}^{k+1} = \mathbf{M}\mathbf{M}^{k} = \begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3(2^{k+1} - 2) \\ 0 & 2^{k} \end{pmatrix}$ $\begin{pmatrix} 1 & 3(2^{k+1} - 2) + 6 \times 2^{k} \\ 0 & 2 \times 2^{k} \end{pmatrix}$ $\begin{pmatrix} 1 & 3(2^{k+1} - 2) + 3 \times 2^{k+1} \\ 0 & 2 \times 2^{k} \end{pmatrix} = \begin{pmatrix} 1 & 3(2^{(k+1)+1} - 2) \\ 0 & 2^{(k+1)} \end{pmatrix}$ $\begin{pmatrix} 1 & 3(2^{k+1} - 2) + 3 \times 2^{k+1} \\ 0 & 2 \times 2^{k} \end{pmatrix} = \begin{pmatrix} 1 & 3(2^{(k+1)+1} - 2) \\ 0 & 2^{(k+1)} \end{pmatrix}$ So true for $n = k \Rightarrow$ true for $n = k + 1$. But true for $n = 1$. So true for all positive	M1(AO2. 1) M1(AO1. 1) M1(AO1. 1) A1(AG) (AO2.2a)	Must have statement in terms of some other variable than <i>n</i> . Uses inductive hypothesis properly Genuine attempt at matrix multi plication (ie columns multiplied into rows) Simplificati on with sufficient working to establish truth for <i>k</i> + 1	Watch out for 2^{k+1} appearing prematurel y as bottom right element or $M^*M = \begin{pmatrix} 1 & 3(2^{k+1}-2) \\ 0 & 2^k \end{pmatrix} \begin{pmatrix} 1 & 6 \\ 0 & 2^k \end{pmatrix}$ $\begin{pmatrix} 1 & 6+2 \times 3(2^{k+1}-2) \\ 0 & 2^k \times 2 \end{pmatrix}$ Must see at least one stage of working between expression for M ^k M (or MM ^k) and required expression for M ^{k+1}	
	integer <i>n</i>	E1(AO2. 4) [6]	Clear	(e.g.: $ \begin{pmatrix} 1 & 3(2+2\times 2^{k+1}-4) \\ 0 & 2^{t}\times 2 \end{pmatrix} $ $ = \begin{pmatrix} 1 & 3(2^{(k+2)}-2) \\ 0 & 2^{(k+1)} \end{pmatrix} $ A formal proof by induction is required for full marks.	

Question	Answer/Indicative content	Marks	Part marks and guidance		
			conclusion for induction process. Needs a fully correct proof which usually means all other marks awarded. Cannot be awarded if there are mistakes in the proof. Examiner's Co This question of answered well candidates app confident with proof by induct The most com mistakes were * Not finishing by induction co usually by stat true for $n = 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	SC If B1M1M1M 1 gained, but A0 because of lack of intermediat e step of working then allow SC B1 for fully correct ending statement mments was generally, and peared to be the idea of tion. mon z: off the proof prectly, ing 'since it is n = k and $n =bw sufficientthen n = 1bw sufficientthat the n =the given thatis true$	
	Total	6			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
9			Formula is true for $n = 1$ since $\frac{1}{5^1} = \frac{1}{5}$ and $\frac{5-4 \times 1}{5} = \frac{1}{5}$ Assume that the formula is true for $n = k$ Then $\sum_{r=1}^{k+1} \frac{5-4r}{5} = \frac{k}{5^k} + \frac{5-4(k+1)}{5^{k+1}}$ $= \frac{5k+5-4(k+1)}{5^{k+1}}$ $= \frac{k+1}{5^{k+1}}$ So if true for $n = k$ then true also for n = k + 1 So true generally	B1(AO 2.5) M1(AO 3. 1a) M1(AO 2. 1) A1(AO 2. 2a) E1(AO 2 .4) [5]	Must include an arithmetic justification Add extra term Manipulate Needs conclusion		
			Total	5			

Qı	uestio	n	Answer/Indicative content	Marks		Part marks a	nd guidance
Q u 10	Jestio	n	Answer/Indicative content $n = 4: 4! = 24 \ge 6 \times 4 = 24$ Assume true for $n = k$ ie $k!$ $\ge 6k$ $(k + 1)! = (k + 1)k! \ge (k + 1)$ $\times 6k$ $\ge 6(k + 1)$ since $k \ge 1$	Marks B1(AO2. 1) M1(AO2. 1) M1(AO1. 1) A1(AO2. 2a)	Clear demo nstration of equality is sufficient Must have statement in terms of some other variable than <i>n</i> Uses inductive hypothesis	Part marks at Must justify with $k \ge 1$ or $k > 1$ or	nd guidance
			So true for $n = k \Rightarrow$ true for $n = k \Rightarrow$ true for $n = k + 1$. But true for $n = 4$. So true for all $n \ge 4$	E1(AO2. 4) [5]	Sufficient working to establish truth for <i>k</i> + 1 Clear conclusion for induction process.	A formal proof by induction is required for full marks.	
			Total	5			

Question	Answer/Indicative content	Marks	Part marks and guidance
11	n 1	B1	Show clearly that result is true when <i>n</i> = 1
	$\overline{2n+1}^+$ (2n+1)(2n+3)	M1*	Add correct (<i>n</i> + 1)th term to given result
	$\frac{n(2n+3)+1}{(2n+1)(2n+3)}$	DM1	
	n+1		Express as a single fraction with a correct denominator
	$\frac{n+1}{2n+3}$	A1	
		B1	Show correct factorisation and obtain correct simplified answer
		[5]	Clear statement of induction conclusion, previous 4 marks must be earned. Must include somewhere "true for $n = 1$ ", "true for n implies true for $n + 1$ ", "true for all n "
			Examiner's Comments Some candidates failed to show clearly that the result is true for $n = 1$. Most added the correct next term to the given sum, although
			a significant minority added $\frac{1}{3}$ 'the value of the first term to the given sum. A significant number of candidates did not give a clear explanation of the induction process, so the last mark was often lost.
	Total	5	

Question		n	Answer/Indicative content	Marks	Part marks and guidance			
12		а	DR $n = 1$, LHS = RHS = $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	B1 (AO 2.1)	Not just LHS = RHS.			
			Assume true for $n = k$ ie $\mathbf{a}_k = \left(-\frac{7}{8}\right)^{k-1} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.	M1 (AO 2.1)	Must have statement in terms of	e t		
			$\mathbf{a}_{k+1} = (\mathbf{a}_k \times \mathbf{b}) \times \mathbf{b} = \left(\left(-\frac{7}{8} \right)^{k-1} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \times \mathbf{b} \right) \times \mathbf{b}$	M1 (AO 2.1)	some other variable than <i>n</i> .			
			$ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \frac{1}{4} \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 \\ -5 \\ 4 \end{pmatrix} $	M1 (AO	Uses inductive hypothesis properly			
			$\frac{1}{4} \begin{pmatrix} 1\\-5\\4 \end{pmatrix} \times \frac{1}{4} \begin{pmatrix} -3\\1\\2 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} -14\\-14\\-14 \end{pmatrix} = -\frac{14}{16} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = -\frac{7}{8} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$	1.1)				
			$\mathbf{a}_{k+1} = \left(-\frac{7}{8}\right)^{k-1} \times -\frac{7}{8} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$	A1 (AO 1.1)	component s correct or all 3 wrong sign.			
			$\mathbf{a}_{k+1} = \left(-\frac{7}{8}\right)^{(k+1)-1} \begin{pmatrix}1\\1\\1\\1\end{pmatrix}$	M1 (AO 2.1)	Working must be convincing. Do not award A1 if from			
			So true for $n = k \Rightarrow$ true for n = k + 1. But true for $n = 1$.	A1(AG) (AO 2.2a)	3wrong signs twice.			
			So true for all positive integer <i>n</i>	E1 (AO 2.4)	Simplificati	A formal proof by induction is required for		
				[8]	on with sufficient working to establish truth for <i>k</i> + 1	full marks.		

Question		n	Answer/Indicative content	Marks		Part marks and guidance		
					Clear conclusion for induction process.			
		b	DR $ \mathbf{a}_n = \left(\frac{7}{8}\right)^{n-1} \sqrt{3} \text{ or } 0.875^{n-1} \sqrt{3}$ $n-1 > \frac{\ln \frac{0.001}{\sqrt{3}}}{\ln \left(\frac{7}{8}\right)}$ (n=56.845) So smallest value of <i>n</i> is 57	B1 (AO 3.1a) M1 (AO 1.1) A1 (AO 3.2a) [3]	Correctly taking logs (any base) and using 3 rd law of logs with correct change of inequality sign			
			Total	11				
13			True for $k = 1$, since $1^5 - 1 = 0$ which is divisible by 5 Assume true for $n = k$, then $k^5 - k$ is divisble by 5 Then $(k + 1)^5 - (k + 1)$ $= k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - k - 1$ $= (5k^4 + 10k^3 + 10k^2 + 5k) + k^5 - k$ $= 5(k^4 + 2k^3 + 2k^2 + k) + k^5 - k$ So if divisible by 5 for $n = k$ then also for $n = k + 1$ True for $n = 1$, so true generally	B1 (AO2.1) M1 (AO2.1) A1 (AO2.5) A1 (AO2.2a) [4]				
			Total	4				

Qı	uestio	n	Answer/Indicative content	Marks	Part marks ar		nd guidance
14		а	$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$	B1 (AO 3.1a)	$\Rightarrow b = 3, d = 4$		
			Determinant = <i>ad</i> – <i>bc</i> = 5	B1 (AO 3.1a)	4 <i>a</i> – 3 <i>c</i> = 5	0r det = –5 and follow through	
			$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	B1 (AO 1.2)	Understand ing of		
			(1 - a)x = by or (1 - d)y = cx	M1 (AO 2.2a)	point seen or implied	(1 - a)x = $3y or$ $b -3y = cx$	
			$\frac{1-a}{c} = \frac{b}{1-d}$ Or $\frac{1-a}{b} = \frac{c}{1-d}$	M1 (AO 1.1)	May have <i>b</i> = 3 and/or <i>d</i> = 4 already substituted		
			<i>c</i> = <i>a</i> – 1	A1 (AO 1.1)	Eliminating <i>x</i> and <i>y</i>		
			e.g. 4 <i>a</i> – 3(<i>a</i> – 1) = 5	M1 (AO 1.1)		If no	
			$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$	A1 (AO 3.2a)	Attempting to solve their simult	incorrect	
				[8]	aneous equations		
					Condone <i>a</i> = 2, etc as long as Matrix seen as $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$		
					Examiner's Co	omments	

Question	Answer/Indicative content	Marks	Part marks and guidance			
			This was found by the candidates to be the second hardest question part on the paper (after question $8(c)$). Most candidates gained the first two marks, for using the image of (0,1) and for setting the determinant equal to 5 (those who set it equal to -5 or ± 5 also gained this mark).			
			Many candidates found the line of invariant points hard to interpret, many assuming that the matrix had an invariant line instead. Another common mistake was to make arithmetical mistakes when solving the simultaneous equations, such as sign errors. Some candidates stated the correct answer with very			
			little working. As this question was not a "show that" and did not require "detailed reasoning" then this was allowed full credit. This is a risky strategy as if the answer was wrong then no marks for correct method can be given.			

Question	Answer/Indicative content	Marks	Part marks and guidance		nd guidance
Question b Image: Constraint of the second	Answer/Indicative content Ne $\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + y \\ 2x + 2y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ ed 2x + y = 0	Marks M1 (AO 1.1) A1 (AO 2.2a) [2]	Substituting a general point into their matrix, calculating an image point and equating it to the object point. Final form must be $y =$ -2x or $x =-\frac{1}{2}y or anumericalmultiple of2x + y = 0$. Examiner's Corr This part was for slightly easier th other parts in q The most comm was to try and f invariant lines r the line of invar A few candidate considered the and not the y co	Part marks and Need to have considered both <i>x</i> and <i>y</i> coordinates mments ound to be than the juestion 8. mon mistake find the rather than riant points. es only <i>x</i> coordinate oordinate.	nd guidance
			Exemplar 4		

Question	Answer/Indicative content	Marks	Part marks and guidance			
			$\frac{\mathcal{E} = \begin{bmatrix} x & 1 \\ 2 & 2 \end{bmatrix}}{\begin{pmatrix} y^{1} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} x & 2 \end{bmatrix} + \begin{bmatrix} y^{1} & 2 \end{bmatrix} + \begin{bmatrix} x^{2} & 2 \end{bmatrix} + \begin{bmatrix} y^{2} & 2 \end{bmatrix} + \begin{bmatrix} x^{2} & 2 \end{bmatrix} + \begin{bmatrix} y^{2} & 2 \end{bmatrix} + \begin{bmatrix} x^{2} & 2 \end{bmatrix} + $			
с	$ \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ x+c \end{pmatrix} = \begin{pmatrix} 3x+x+c \\ 2x+2x+2c \end{pmatrix} $ $ \operatorname{So}\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 4x+c \\ 4x+2c \end{pmatrix} \dots $	M1* (AO 3.1a) M1dep*				
	and $Y = X + c$ Alt $\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} X \\ mX + c \end{pmatrix}$ 3x + mx + c = X	A1 (AO 1.1) M1	Could see the y component of the vector written as 4x + c + c.			

Question	Answer/Indicative content	Marks	Part marks and guidance
	2x + 2mx + 2c = m(3x + mx + c) + c $x(m^{2} + m - 2) + c(m - 1) = 0$ x(m + 2)(m - 1) + c(m - 1) = 0 If $m = 1, c(m - 1) = 0$ satisfied by any c	M1 [3]	Need to eliminate X, i.e. an equation in x, m and c.Examiner's CommentsThis was found to be the hardest question part in the paper, and it was also the one with the highest omit rate (20% did not attempt this question). Many candidates did not use the form of the line given in the question, but instead tried to use a general line such as $y = mx + c$ (or $y = mx$ but this was not a valid
	Total	13	

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
15				B1	Show clearly result true for $n = 1$, accept $(u_1) = 2 \times 3 - 1 = 5$
			$3(2 \times 3^{n} - 1) + 2$	M1	Substitute for <i>u_n</i> in recurrence relation
				A1	Establish correct result for <i>u</i> _{n+1} convincingly
				B1	Clear statement of induction conclusion, provided 1 st 3 marks earned
					Examiner's Comments
					Some candidates failed to show clearly that the result is true for $n = 1$, while others started the process at $n = 2$. Most were able to show that using the given form in the recurrence relation set up the induction process correctly. A significant number of candidates did not give a clear explanation of the induction process, so the last mark was often lost.
			Total	4	