12Ma Pure Mini Test 05
 Calculus (Differentiation and Integration)

Total 24 marks, 24 mins

Question 1

Edexcel IAL P1 Oct 2021 Q10 (adapted)

A curve has equation $y=f(x), x>0$
Given that

- $f^{\prime}(x)=k x-12 x^{\frac{1}{3}}$, where k is a constant
- $f^{\prime \prime}(x)=0$ when $x=27$
- the curve passes through the point $(1,-8)$
(a) find the value of k.
(b) Hence find $f(x)$.

Question 2

Edexcel IAL P2 June 2019 Q10 (adapted)

Figure 1
Figure 1 shows a sketch of part of the curve C with equation $y=f(x)$ where

$$
f(x)=\frac{36}{x^{2}}+2 x-13 \quad x>0
$$

Using calculus,
(a) Show that $\int_{2}^{9}\left(\frac{36}{x^{2}}+2 x-13\right) \mathrm{d} x=0$

Given that

- the point $P(2,0)$ and the point $Q(6,0)$ lie on C
- $\int_{2}^{6}\left(\frac{36}{x^{2}}+2 x-13\right) \mathrm{d} x=-8$
(b) state the value of $\int_{6}^{9}\left(\frac{36}{x^{2}}+2 x-13\right) \mathrm{d} x$
(c) find the value of the constant k such that $\int_{2}^{6}\left(\frac{36}{x^{2}}+2 x+k\right) \mathrm{d} x=0$

Question 3

Edexcel IAL P2 June 2019 Q8 (adapted)

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
y=\frac{4}{3} x^{3}-11 x^{2}+k x \quad \text { where } k \text { is a constant }
$$

Given that M has an x-coordinate of 2 and is the maximum turning point of C.
(a) Show that $k=28$.
(b) Determine the range of values of x for which y is increasing.

The line l passes through M and is parallel to the x-axis.
The region, R, shown shaded in Figure 2, is bounded by the curve C, the line l, and the y-axis.
(c) Find the exact area of R.

