The equation $x^3 - 8x^2 + cx + d = 0$, where c and d are real numbers, has roots α , β , γ .

When plotted on an Argand diagram, the triangle with vertices at α , β , γ has an area of 8.

Given α = 2, find the values of c and d.

Fully justify your solution.

(Total 5 marks)

The equation $x^3 - 8x^2 + cx + d = 0$, where c and d are real numbers, has roots α , β , γ .

When plotted on an Argand diagram, the triangle with vertices at α , β , γ has an area of 8.

Given $\alpha = 2$, find the values of c and d.

Fully justify your solution.

7+130

(Total 5 marks

d - d - 3

2 + a + b + a - b = 8 2a = 6 a = 3 2dx = 8 d = 8

d=-0188 =-2 (3+81)3-81) =-1116

C = 2(3+81)+2(3-81)+(3+1)/8 C = 12 + 73 = 85

Marking Instructions	AO	Marks	Typical Solution
Writes β and γ in the form $p \pm qi$ (seen anywhere in the solution)	AO2.5	B1	Real coefficients $\Rightarrow \beta = p + qi$ and $\gamma = p - qi$
Uses "sum of the roots = $-b/a$ " together with a conjugate pair to determine the real part (p) of β and γ	AO3.1a	M1	$\alpha + \beta + \gamma = 8$ $\Rightarrow 2 + p + qi + p - qi = 8$ $\Rightarrow 2 + 2p = 8$ $\Rightarrow p = 3$
Uses '(their p)' – 2 and the area of the triangle on an Argand diagram to determine the imaginary parts of β and γ	AO3.1a	M1	$(p-2)q = 8$ $\Rightarrow q = 8$ $ m \land q $ q
Uses a correct method to find the value of c or d using 'their' values of $p \pm qi$	AO1.1a	M1	$\beta = 3 + 8i \text{ and } \gamma = 3 - 8i$
Obtains correct values for c and d . CAO	AO1.1b	A1	$d = -\alpha\beta\gamma = -146$ $c = \sum \alpha\beta = 85$
			Total 5 marks

The cubic equation

$$9x^3 - 5x^2 + 4x + 7 = 0$$

has roots a, β and γ .

Without solving the equation, find the cubic equation whose roots are (3a-2), $(3\beta-2)$ and $(3\gamma-2)$, giving your answer in the form $aw^3+bw^2+cw+d=0$, where a, b, c and d are integers to be determined.

(Total for question = 5 marks)

Question	Scheme	Marks	AOs
	$w = 3x - 2 \Rightarrow x = \frac{w + 2}{3}$	В1	3.1a
	$9\left(\frac{w+2}{3}\right)^3 - 5\left(\frac{w+2}{3}\right)^2 + 4\left(\frac{w+2}{3}\right) + 7 = 0$	M1	3.1a
	$\frac{1}{3}(w^3 + 6w^2 + 12w + 8) - \frac{5}{9}(w^2 + 4w + 4) + \frac{4}{3}(w + 2) + 7 = 0$		
		dM1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		A1	1.1b
		(5)	
	Alternative:		
	$\alpha + \beta + \gamma = \frac{5}{9}, \alpha\beta + \beta\gamma + \alpha\gamma = \frac{4}{9}, \alpha\beta\gamma = -\frac{7}{9}$	В1	3.1a
	New sum = $3(\alpha + \beta + \gamma) - 6 = -\frac{13}{3}$		
	New pair sum = $9(\alpha\beta + \beta\gamma + \gamma\alpha) - 12(\alpha + \beta + \gamma) + 12 = \frac{28}{3}$	M1	3.1a
	New product = $27\alpha\beta\gamma - 18(\alpha\beta + \beta\gamma + \gamma\alpha) + 12(\alpha + \beta + \gamma) - 8 = -\frac{91}{3}$		
	$w^3 - \left(-\frac{13}{3}\right)w^2 + \frac{28}{3}w - \left(-\frac{91}{3}\right) = 0$	dM1	1.1b
	2 3 12 2 20 01 6	A1	1.1b
	$3w^3 + 13w^2 + 28w + 91 = 0$	A1	1.1b
		(5)	
		(5	marks

Q2.

Given that $z = e^{i\theta}$

(a) show that
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

where n is a positive integer.

(2)

(b) Show that

$$\cos^6\theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right)$$

(5)

(c) Hence solve the equation

$$\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta = 0$$
 $0 \leqslant \theta \leqslant \pi$

Give your answers to 3 significant figures.

(4)

7"+2"= 2"10 +e-10 = COSN O + ISANO + COSN O - ISAND

(a) show that
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

Given that $z = e^{i\theta}$

(c) Hence solve the equation

$$\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta = 0$$
 $0 \le \theta \le \pi$

$$32\omega s^{6}\theta - 10 = 0$$

$$\omega s^{6}\theta = \frac{1}{5}$$

$$\omega s \theta = \pm 6 \int_{5}^{5} (4)$$

$$\theta = 0.603, \quad 22.54$$

Number	Scheme	Marks
(a)	$z^n = e^{in\theta} = \cos n\theta + i\sin n\theta$	
	$\frac{1}{z^n} = e^{-in\theta} = \cos(-n\theta) + i\sin(-n\theta) = \cos n\theta - i\sin n\theta$ $z^n + \frac{1}{z^n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta = 2\cos n\theta *$	M1A1cso (2)
(b)	$\left(z + \frac{1}{z}\right)^6 = z^6 + 6z^5 \times \frac{1}{z} + \frac{6 \times 5}{2!} z^4 \times \frac{1}{z^2} + \frac{6 \times 5 \times 4}{3!} z^3 \times \frac{1}{z^3} + \frac{6 \times 5 \times 4 \times 3}{4!} z^2 \times \frac{1}{z^4} + \frac{6 \times 5 \times 4 \times 3 \times 2}{5!} z \times \frac{1}{z^5} + \frac{1}{z^6}$ $\left(2\cos\theta\right)^6 = z^6 + 6z^4 + 15z^2 + 20 + 15 \times \frac{1}{z^2} + 6 \times \frac{1}{z^4} + \frac{1}{z^6}$	M1A1
	$64\cos^{6}\theta = z^{6} + \frac{1}{z^{6}} + 6\left(z^{4} + \frac{1}{z^{4}}\right) + 15\left(z^{2} + \frac{1}{z^{2}}\right) + 20$ $64\cos^{6}\theta = 2\cos 6\theta + 6 \times 2\cos 4\theta + 15 \times 2\cos 2\theta + 20$	M1 M1
	$\cos^6\theta = \frac{1}{32} \left(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10\right)^{\frac{1}{4}}$	A1* (5)

(c)
$$\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 = 10$$

$$32\cos^{6}\theta = 10$$

$$\cos \theta = \pm \frac{8}{16} \frac{5}{16}$$

$$\theta = 0.6027..., 2.5388... \quad \theta = 0.603, 2.54$$
MIA1 (4)

(d)
$$\int_{0}^{\frac{\pi}{3}} (32\cos^{6}\theta - 4\cos^{2}\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{3}} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 - 4\cos^{2}\theta) d\theta$$

$$= \left[\frac{1}{6}\sin 6\theta + \frac{3}{2}\sin 4\theta + \frac{13}{2}\sin 2\theta + 8\theta\right]_{0}^{\frac{\pi}{3}}$$
MIA1
$$= (0) + \frac{3}{2} \left(-\frac{\sqrt{3}}{2}\right) + \frac{13}{2} \times \frac{\sqrt{3}}{2} + \frac{8\pi}{3} \quad (-0)$$
MIA1
$$= \frac{5\sqrt{3}}{2} + \frac{8\pi}{3} \quad \text{oe}$$
A1 (5)
[16]

Figure 2

Figure 2 shows the vertical cross-section, AOBCDE, through the centre of a wax candle.

In a model, the candle is formed by rotating the region bounded by the *y*-axis, the line *OB*, the curve *BC*, and the curve *CD* through 360° about the *y*-axis.

The point B has coordinates (3, 0) and the point C has coordinates (5, 15).

The units are in centimetres.

The curve BC is represented by the equation

$$y = \frac{\sqrt{225x^2 - 2025}}{a} \qquad 3 \le x < 5$$

where a is a constant.

(a) Determine the value of \boldsymbol{a} according to this model.

(2)

The curve ${\it CD}$ is represented by the equation

$$y = 16 - 0.04x^2$$
 $0 \le x < 5$

(b) Using algebraic integration, determine, according to the model, the exact volume of wax that would be required to make the candle.

(9)

(c) State a limitation of the model.

(1)

When the candle was manufactured, 700 cm³ of wax were required.

(d) Use this information and your answer to part (b) to evaluate the model, explaining your reasoning.

1-4

Figure 2

Figure 2 shows the vertical cross-section, AOBCDE, through the centre of a wax candle.

In a model, the candle is formed by rotating the region bounded by the y-axis, the line OB, the curve BC, and the curve CD through 360° about the y-axis.

The point B has coordinates (3, 0) and the point C has coordinates (5, 15).

The units are in centimetres.

The curve BC is represented by the equation

$$y = \frac{\sqrt{225x^2 - 2025}}{a} \qquad 3 \le x < 5$$

(a) Determine the value of a according to this model.

The curve CD is represented by the equation

$$y = 16 - 0.04x^2$$
 $0 \le x < 5$

(b) Using algebraic integration, determine, according to the model, the exact volume of wax that would be required to make the

(c) State a fimitation of the model.

When the candle was manufactured, 700 cm³ of wax were required

(d) Use this information and your answer to part (b) to evaluate the model, explaining your reasoning.

a)
$$15 = \int \frac{225(5)^2 - 2025}{a}$$

a)
$$15 = \int 225(5)^2 - 2025$$

$$0 = 4$$

$$15$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

$$0 = 4$$

in c) the surface of the lardle.

in well have bumps easy

supplied to perfectly.

model is suitable as the estimate is close to the actual value

Question	Scheme	Marks	AOs
(a)	$(5, 15) \Rightarrow 15 = \frac{\sqrt{225 \times 5^2 - 2025}}{a} \Rightarrow a = \dots$	M1	3.3
	a = 4	A1	1.1b
		(2)	
(b)	Evidence of the use of $\pi \int x^2 dy$ for the curve BC or the curve CD	M1	3.1b
	For BC $V_1 = \frac{\pi}{225} \int (16y^2 + 2025) dy$ or $\pi \int (\frac{16}{225}y^2 + 9) dy$	A1ft	1.1b
	For CD $V_2 = 25\pi \int (16 - y) dy$ or $\pi \int (400 - 25y) dy$	A1	1.1b
	$V_1 = \frac{\pi}{225} \int_0^{15} (16y^2 + 2025) dy \text{ or } \pi \int_0^{15} \left(\frac{16}{225} y^2 + 9 \right) dy$	M1	3.3
	$V_2 = 25\pi \int_{15}^{16} (16 - y) dy \text{ or } \pi \int_{15}^{16} (400 - 25y) dy$	M1	3.3
	$V_1 = \frac{\{\pi\}}{225} \left[\frac{16y^3}{3} + 2025y \right]_0^{15} \text{ or } \{\pi\} \left[\frac{16y^3}{675} + 9y \right]_0^{15}$	A1ft	1.1b
	$V_2 = 25\{\pi\} \left[16y - \frac{y^2}{2} \right]_{15}^{16} \text{ or } \{\pi\} \left[400y - \frac{25y^2}{2} \right]_{15}^{16}$	A1ft	1.1b
	$V = V_1 + V_2 = \frac{\pi}{225} (18000 + 30375) + 25\pi \left(128 - \frac{255}{2}\right)$	M1	3.4
Į	$V = V_1 + V_2 = 215\pi + 12.5\pi$		
	$V = \frac{455\pi}{2} \text{ cm}^3 \text{ or } 227.5\pi \text{ cm}^3$	A1	2.2b
		(9)	
(c)	E.g. The equation of the curve may not be a suitable model The sides of the candle will not be perfectly curved/smooth There will be a whole in the middle for the wick	B1	3
		(1)	
(d)	Makes an appropriate comment that is consistent with their value for the volume and 700 cm ³ . E.g. a good estimate as 700 cm ³ is only 15 cm ³ less than 715 cm ³	d 700 cm ³ . B1ft	
ŀ		(1)	
		/1	3 mark

$$\mathbf{A} = \begin{pmatrix} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{pmatrix} \quad \text{where } k \text{ is a constant}$$

(a) Determine the values of k for which **A** is singular.

(2)

Given that **A** is non-singular,

(b) find \mathbf{A}^{-1} , giving your answer in terms of k.

(4)

(Total for question = 6 marks)

Question Number	Scheme	Notes	Marks
(a)	$\mathbf{A} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	k 2 2 k 2 2	
	$ \mathbf{A} = 2(4-2k)-k(4)$ $\Rightarrow k^2 - 8k + 12$ Attempts det $\mathbf{A} = 0$ and solves Note that the usual rules for solving a 3TG values for k at The attempt at the determinant should be a k so allow errors only k . Note that the rule of Sarrus give	(-k)+2(4-2)=0 = $0 \Rightarrow k =$ 3TQ to obtain 2 values for k Q do not need to be applied as long as 2 re obtained.	M1
	k = 2, 6	Correct values.	A1
	Marks for part (a) can only be scored in from pa		
			(2)
(b)	$\begin{pmatrix} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 4-2k & 4-k \\ 2k-4 & 2 & 4 \\ k^2-4 & 2k-4 & 4 \end{pmatrix}$ Applies the correct method to real Should be an attempt at the minor.	ch at least a matrix of cofactors are followed by $\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$ for at least 6 correct cofactors	MI
	$\begin{pmatrix} 4-2k & k-4 & 2 \\ 4-2k & 2 & k-4 \\ k^2-4 & 4-2k & 4-2k \end{pmatrix} \rightarrow$ dM1: Attempts adjoint matrix by transparent A1: Correct	oosing. Dependent on previous mark.	dM1 A1
	$\mathbf{A}^{-1} = \frac{1}{k^2 - 8k + 12} \begin{pmatrix} 4 - 2 \\ k - 4 \\ 2 \end{pmatrix}$ Fully correct inverse or follow through the where their determinant of the following specific content of the second specific cont	$\begin{array}{ccc} k & 4-2k & k^2-4 \\ 4 & 2 & 4-2k \\ k-4 & 4-2k \end{array}$ eir incorrect determinant from part (a)	A1ft
	Ignore any labelling of the matrices and matri	allow any type of brackets around the	
	matri	ACO	(4)
			Total 6

Q5.

(a) Express $\frac{2}{r(r^2-1)}$ in partial fractions.

(3

(b) Hence find, in terms of *n*,

$$\sum_{r=2}^{n} \frac{1}{r(r^2-1)}$$

Give your answer in the form

$$\frac{n^2 + An + B}{Cn(n+1)}$$

where A, B and C are constants to be found.

(5)

(Total for question = 8 marks)

Question Number	Scheme	Marks
(a)	$\frac{2}{r(r+1)(r-1)} = \frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}$	M1A1A1 (3)
(b)	$r = 2 1 - \frac{2}{2} + \frac{1}{3}$ $r = 3 \frac{1}{2} - \frac{2}{3} + \frac{1}{4}$	
	$r = 4 \frac{1}{3} - \frac{2}{4} + \frac{1}{5}$	M1
	$r = n - 1 \frac{1}{n - 2} - \frac{2}{n - 1} + \frac{1}{n}$	
	$r = n \qquad \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}$	M1
	$\sum_{r=2}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right) = \left(1 - \frac{2}{2} + \frac{1}{2} + \frac{1}{n} - \frac{2}{n} + \frac{1}{n+1} \right)$	A1
	$\frac{1}{2} \sum_{r=1}^{n} \frac{2}{r(r+1)(r-1)} = \frac{1}{2} \times \left(\frac{1}{2} - \frac{1}{n} + \frac{1}{n+1}\right) = \frac{n^2 + n - 2}{4n(n+1)}$	dM1A1 (4)

5. Evaluate the improper integral

$$\int_{2}^{\infty} 3e^{(4-2x)} dx$$

(3)

$$\frac{1}{1} \frac{1}{1} \frac{1$$

Question	Scheme	Marks	AOs
5(i)	$\int 3e^{(4-2x)} dx = -\frac{3}{2}e^{(4-2x)}$	B1	1.1b
	$\int_{2}^{\infty} 3e^{(4-2x)} dx = \lim_{t \to \infty} \left[\left(-\frac{3}{2} e^{(4-2t)} \right) - \left(-\frac{3}{2} e^{(4-2x)} \right) \right]$	M1	2.1
	$=\frac{3}{2}$	A1	1.1b
		(3)	

(a) Write
$$\frac{4}{4x+1} - \frac{3}{3x+2}$$
 in the form $\frac{C}{(4x+1)(3x+2)}$, where C is a constant.

(b) Evaluate the improper integral

$$\int_{1}^{\infty} \frac{10}{(4x+1)(3x+2)} dx$$

showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant.

(6)

(Total 7 marks)

(a) Write
$$\frac{4}{4x+1} - \frac{3}{3x+2}$$
 in the form $\frac{C}{(4x+1)(3x+2)}$, where C is a constant.

(b) Evaluate the improper integral

$$\int_{1}^{\infty} \frac{10}{(4x+1)(3x-2)} dx$$

showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant

$$4(3x+2) - 3(4x+1) = 5$$

(6) (Total 7 marks)

(1)

b)
$$2\int \frac{4}{4x+1} - \frac{3}{3x+2} dx$$
 $\lim_{t \to \infty} \left[2 \ln \left(\frac{4x+1}{3x+2} \right) \right]^{t}$
 $\lim_{t \to \infty} \left[2 \ln \left(\frac{4x+1}{3x+2} \right) \right]^{t} = \ln \frac{16}{9}$

(a)
$$\frac{12x+8-12x-3}{(4x+1)(3x+2)} = \frac{5}{(4x+1)(3x+2)}$$
Accept $C = 5$

31

(b)
$$\int \frac{10}{(4x+1)(3x+2)} dx = 2 \int \left(\frac{4}{(4x+1)} - \frac{3}{(3x+2)} \right) dx$$

M1

=
$$2[\ln(4x+1)-\ln(3x+2)]$$
 (+ c)

A1

$$I = \lim_{a \to \infty} \int_{1}^{a} \left(\frac{10}{(4x+1)(3x+2)} \right) dx$$

$$\propto replaced by a and \lim_{a \to \infty} (OE)$$

M1

Limiting process shown.

Dependent on the previous M1M1

$$= 2_{a \to \infty}^{\lim} \left[\ln \left(\frac{4a+1}{3a+2} \right) \right] = 2_{a \to \infty}^{\lim} \left[\ln \left(\frac{4+\frac{1}{a}}{3+\frac{2}{a}} \right) \right]$$

 $= 2^{\lim}_{a\to\infty} [\ln(4a+1) - \ln(3a+2)] - (\ln 5 - \ln 5)$

$$= 2\ln\frac{4}{3} = \ln\frac{16}{9}$$
CSO

Q6.

Given that $y = \operatorname{artanh}(\cos x)$

(a) show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}\ x$$

(2)

(b) Hence find the exact value of

$$\int_0^{\frac{\pi}{6}} \cos x \, \operatorname{artanh}(\cos x) \, \mathrm{d}x$$

giving your answer in the form $a \ln \left(b + c \sqrt{3} \right) + d\pi$, where a, b, c and d are rational numbers to be found.

(5)

(Total for question = 7 marks)

Given that $y = \operatorname{artanh}(\cos x)$

(a) show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}\,x$$

(b) Hence find the exact value of

$$\int_0^{\frac{\pi}{6}} \cos x \, \operatorname{artanh}(\cos x) \, \mathrm{d}x$$

giving your answer in the form $a \ln(b + c\sqrt{3}) + d\pi$, where a, b, c and d are rational numbers to be found.

tanhy =
$$\cos 2$$

 $\operatorname{Sech}^{7}y \, dy = -\operatorname{SIN}x$
 $\frac{dy}{dx} = \frac{-\operatorname{SIN}x}{\operatorname{Sech}^{7}y}$
 $\frac{-\operatorname{SIN}x}{-\operatorname{tanh}^{7}y+1}$
 $\frac{-\operatorname{SIN}x}{-\operatorname{SIN}x}$

$$U = a_1 tanh(csx) V = SIN1$$

$$U = -cosech$$

$$V = Cosx$$
(Total for question = 7 marks)
$$U = -cosech$$

$$V = Cosx$$
(Total for question = 7 marks)

[SINX actach (cosx)] - SINI (-1/12 / 1/2 - 4/10/274/3/72. [SINX actach (cosx)] + X] = - Lerctanh (3) + A

Question	Schei			
(a)	$y = \operatorname{artanh}(\cos x)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - \cos^2 x} \times -\sin x$	Correct use of the chain rule		M1
	$= \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$	A1: Correct completion with no errors		A1
				(2)
	Alternative 1			
	$\tanh y = \cos x \Rightarrow \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = -\sin x$			
	$\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-\sin x}{1 - \cos^2 x}$	Correct differentiation to obtain a function of x		M1
	$= \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$	A1: Correct completion with no errors		A1
				(2)
	Alternative 2			
	$\operatorname{artanh}(\cos x) = \frac{1}{2} \ln \left(\frac{1 + \cos x}{1 - \cos x} \right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x (1 - \cos x) - \sin x}{(1 - \cos x)}$	$\frac{1}{2}x(1+\cos x)$	Correct differentiation to obtain a function of x	M1
	$=\frac{-2\sin x}{2(1-\cos^2 x)} = -\csc x$		A1: Correct completion with no errors	A1
				(2)

(b)	$\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosecx} dx$ M1: Parts in the correct direction A1: Correct expression		
	$\left[\sin x \operatorname{artanh}(\cos x) + x\right]_0^{\frac{\pi}{6}} = \frac{1}{2}\operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\left(-(0)\right)$ M1: Correct use of limits on either part (provided both parts are integrated). Lower limit need not be shown		
	$= \frac{1}{4} \ln \left(\frac{1 + \frac{\sqrt{5}}{2}}{1 - \frac{\sqrt{5}}{2}} \right) + \frac{\pi}{6}$	Use of the logarithmic form of artanh	M1
	$= \frac{1}{4} \ln \left(7 + 4\sqrt{3} \right) + \frac{\pi}{6} \text{ or } \frac{1}{2} \ln \left(2 + \sqrt{3} \right) + \frac{\pi}{6}$	Cao (oe)	A1
	The last 2 M marks may be gained in reverse order.		(5)
		•	(7 marks)

8. Water and antifreeze are being mixed together in a tank.

The mixture is stirred continuously so that the water and antifreeze are instantly dispersed evenly throughout the tank.

Initially the tank holds a mixture of 8 litres of water and 2 litres of antifreeze, so that the concentration of antifreeze in the mixture is said to be 20%.

The concentration of antifreeze in the mixture is now increased by

- · adding water to the tank at a rate of 0.1 litres per second
- · adding antifreeze to the tank at a rate of 0.3 litres per second
- · pumping mixture from the tank at a rate of 0.4 litres per second.

Let x litres be the amount of antifreeze in the tank at time t seconds after the mixture starts to be altered.

(a) Show that the change in the amount of antifreeze in the tank can be modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.3 - \frac{x}{k}$$

where k is a positive constant to be determined.

(2)

(b) By solving the differential equation, determine how long it will take for the concentration of antifreeze in the mixture to reach 40%, according to the model.

Give your answer to the nearest tenth of a second.

(6)

As t becomes large, the concentration of antifreeze in the mixture approaches c%, where c is a constant.

(c) Find the value of c

(2)

(Total for Question 8 is 10 marks)

Water and antifreeze are being mixed together in a tank.

The mixture is stirred continuously so that the water and antifreeze are instantly dispersed evenly throughout the tank.

Initially the tank holds a mixture of 8 litres of water and 2 litres of antifreeze, so that the concentration of antifreeze in the mixture is said to be 20%.

The concentration of antifreeze in the mixture is now increased by

- · adding water to the tank at a rate of 0.1 litres per second
- adding antifreeze to the tank at a rate of 0.3 litres per second
- pumping mixture from the tank at a rate of 0.4 litres per second.

Let x litres be the amount of antifreeze in the tank at time t seconds after the mixture starts to be altered.

(a) Show that the change in the amount of antifreeze in the tank can be modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.3 - \frac{x}{k}$$

where k is a positive constant to be determined.

= 36

V=8+2+01+

Vate in : 0.3

(b) By solving the differential equation, determine how long it will take for the concentration of antifreeze in the mixture to reach 40%, according to the model. (6) $x + \frac{1}{2x}x = 0.3$ IF: $e^{\frac{1}{2x}}dt = e^{\frac{1}{2x}t}$

Give your answer to the nearest tenth of a second

approaches c%, where c is a constant.

As t becomes large, the concentration of antifreeze in the mixture

approaches c%, where c is a constant.

(c) Find the value of c

(2) $\frac{1}{4} = \frac{1}{4} = \frac{1}{4$

M11

A1

(2)

3.5a

2.2b

(10 marks)

Volume of mixture = (8 + 2) litres therefore 8(a) M1 3.3 Rate of antifreeze out = $0.4 \times \frac{x}{10}$ litres per second $\frac{dx}{dt} = 0.3 - \frac{x}{25}$ A1 1.1b (2) Rearranges $\frac{dx}{dt} + \frac{x}{25} = 0.3$ and attempts 3.1a M1 Integrates to the form $xe^{\frac{t}{25}} = \int 0.3e^{\frac{t}{25}} dt \Rightarrow xe^{\frac{t}{25}} = \lambda e^{\frac{t}{25}}(+c)$ M11 1b $-\ln(7.5-x) = \frac{1}{25}t + c$ $xe^{\frac{t}{25}} = 7.5e^{\frac{t}{25}} + c$ A1ft 1.1b M1 3.4 $x = \frac{7.5e^{\frac{t}{25}} - 5.5}{e^{\frac{t}{25}}} = 4$ rearranges to achieve $e^{\frac{r}{5}} = \alpha$ and solves to find a $-\ln(7.5-4) = \frac{1}{25}t - \ln 5.5$ value for t 34 Leading to a value for t $x = 7.5 - 5.5e^{-\frac{t}{25}} = 4$ rearranges to achieve $e^{-\frac{t}{25}} = \beta$ and solves to find a value for t t = awrt 11.3 seconds 2.2b (6) $x = \frac{7.5 e^{\frac{t}{25}} - 5.5}{\frac{t}{25}} = \frac{7.5 - 5.5 e^{\frac{t}{25}}}{1} \text{ so } = \lim_{t \to \infty} x = \frac{7.5 - 5.5 \times 0}{1} = 7.5$ (c)

Then 7.5 as a percentage of 10.

c = 75 (%)