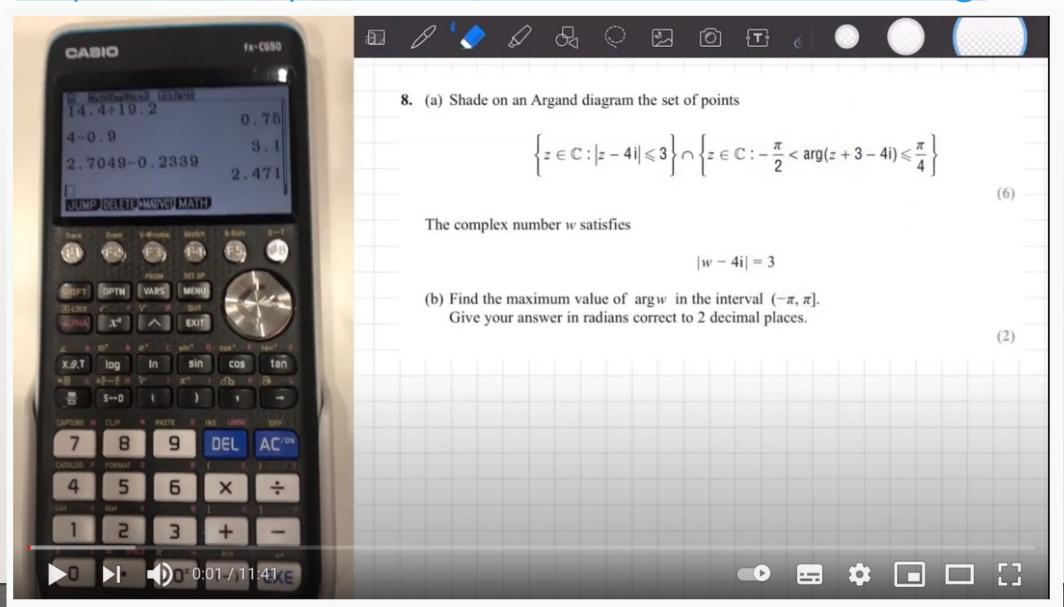
Mr. Chan's Loci in Argand Diagram
Questions by topic pack

https://www.youtube.com/watch?v=XBrVET4gl



Difficulty #1 (Circles, Half Lines, Perpendicular Bisector), Equate, Regions (Old Spec OCR FP1)

- 4. OCR JUNE 2005
- 6. OCR JAN 2006
- 8. OCR JUNE 2006
- <u>10. OCR JAN 2007</u>
- <u>12. OCR JUNE 2007</u>
- 14. OCR JAN 2008
- 16. OCR June 2008

- 18. OCR JAN 2009
- 20. OCR JUNE 2009
- 22. OCR JAN 2010
- 24. OCR JUNE 2010
- 26. OCR JAN 2011
- 28. OCR JUNE 2011
- 30. OCR JAN 2012

- 32. OCR JUNE 2012
- 34. OCR JAN 2013
- 36. OCR JUNE 2013

Difficulty #2 (Circles, Half Lines, Perpendicular Bisector), Equate, Regions (Old Spec AQA FP2) Include (max/min)

- 38. AQA Jan 2006 FP2 50. AQA JUNE 2008 FP2 62. AQA JUNE 2011 FP2
- 40. AQA Jan 2006 FP2
 52. AQA JAN 2009 FP2
 64. AQA JAN 2012 FP2
- 42. AQA June 2006 FP2 54. AQA JUNE 2009 FP2 66. AQA JUNE 2012 FP2
- 44. AQA Jan 2007 FP2
 56. AQA JAN 2010 FP2
 68. AQA JAN 2013 FP2
- 46. AQA JUNE 2007 FP2
 58. AQA JUNE 2010 FP2
 70. AQA JUNE 2013 FP2
- 48. AQA Jan 2008 FP2
 60. AQA JAN 2011 FP2

6 The loci C_1 and C_2 are given by

$$|z - 2i| = 2$$
 and $|z + 1| = |z + i|$

respectively.

- (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 .
- (ii) Hence write down the complex numbers represented by the points of intersection of C_1 and C_2 . [2]

[5]

6.	(i) Circle	B1		Sketch(s) showing correct features, each mark
	Centre (0, 2)	B1		independent
	Radius 2	B1		
	Straight line	B1		
	Through origin with positive slope	B1	5	
			,	
	(ii) 0 or 0 +0i and 2 + 2i	B1ftB1f	2	Obtain intersections as complex numbers
		t		
9 8			7	

- 7 (a) The complex number 3 + 2i is denoted by w and the complex conjugate of w is denoted by w^* . Find
 - (i) the modulus of w,
 - (ii) the argument of w^* , giving your answer in radians, correct to 2 decimal places. [3]
 - (b) Find the complex number u given that $u + 2u^* = 3 + 2i$. [4]
 - (c) Sketch, on an Argand diagram, the locus given by |z+1| = |z|. [2]

7.	(a) (i) √13 (ii)	B1	1	Obtain correct answer, decimals OK
	- 0.59 (b)	M1 A1 A1	3	Using tan ^{-1 b} / _a , or equivalent trig allow + or - Obtain 0.59 Obtain correct answer
	1 – 2i	M1 A1A1 A1	4	Express LHS in Cartesian form & equate real and imaginary parts Obtain $x = 1$ and $y = -2$ Correct answer written as a complex number
	(c)	B1 B1	2	Sketch of vertical straight line Through (- 0.5, 0)
	<i>(1)</i>		10	

6 In an Argand diagram the loci C_1 and C_2 are given by

$$|z| = 2$$
 and $\arg z = \frac{1}{3}\pi$

respectively.

- (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 .
- (ii) Hence find, in the form x + iy, the complex number representing the point of intersection of C_1 and C_2 . [2]

[5]

\vdash		4		
6	(i) Circle, Centre O radius 2	B1 B1		Sketch showing correct features
	One straight line	B1		
	Through O with +ve slope	B1		
	In 1st quadrant only	B1	5	
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving
		1411		equations or from graph
		A1	2	Correct answer stated as complex number
			7	

- 4 (i) Sketch, on an Argand diagram, the locus given by $|z 1 + i| = \sqrt{2}$.
 - (ii) Shade on your diagram the region given by $1 \le |z 1 + i| \le \sqrt{2}$. [3]

[3]

4.	(i)	B1		Circle
		B1		Centre (1, -1)
		B1	3	Passing through (0, 0)
	(ii)	B1		Sketch a concentric circle
		B1		Inside (i) and touching axes
		B1	3	Shade between the circles
37		1	6	

- 8 The loci C_1 and C_2 are given by |z-3|=3 and $\arg(z-1)=\frac{1}{4}\pi$ respectively.
 - (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 .

[6]

(ii) Indicate, by shading, the region of the Argand diagram for which

$$|z-3| \le 3$$
 and $0 \le \arg(z-1) \le \frac{1}{4}\pi$.

[2]

8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through $(1, 0)$ with +ve slope	B1		
	In 1st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above x-axis		2	SR: B1ft for any 2 correct features
			8	(E)T-(F)

6 The loci C_1 and C_2 are given by

$$|z| = |z - 4i|$$
 and $\arg z = \frac{1}{6}\pi$

respectively.

- (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 .
- (ii) Hence find, in the form x + iy, the complex number represented by the point of intersection of C_1 and C_2 . [3]

[5]

4725

Mark Scheme

January 2008

6	(i)	B1		Horizontal straight line in 2 quadrants
	2	B1		Through (0, 2)
		B1		Straight line
		B1		Through O with positive slope
		B1	5	In 1 st quadrant only
	(ii)			
		B1		State or obtain algebraically that $y = 2$
	$2\sqrt{3} + 2i$	M1		Use suitable trigonometry
	_ , _ , _ ,	A1	3	Obtain correct answer a.e.f. decimals OK must
9: 10		g.	8	be a complex number

OCR June 2008

- 2 The complex number 3 + 4i is denoted by a.
 - (i) Find |a| and arg a.

[2]

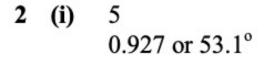
(ii) Sketch on a single Argand diagram the loci given by

(a)
$$|z-a|=|a|$$
,

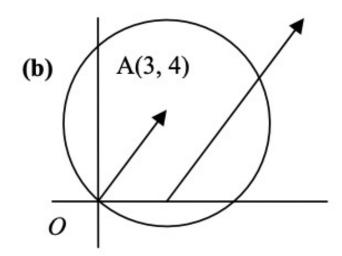
[2]

(b)
$$arg(z-3) = arg a$$
.

[3]



(ii)(a)



B1 Correct modulus

B1 Correct argument, any equivalent form

2

B1 Circle centre A(3, 4)

B1 Through O, allow if centre is (4, 3)

2

B1 Half line with +ve slope

B1 Starting at (3, 0)

B1 Parallel to *OA*, (implied by correct arg shown)

3

- (i) Use an algebraic method to find the square roots of the complex number $2 + i\sqrt{5}$. Give your answers in the form x + iy, where x and y are exact real numbers. [6]
 - (ii) Hence find, in the form x + iy where x and y are exact real numbers, the roots of the equation

$$z^4 - 4z^2 + 9 = 0. ag{4}$$

- (iii) Show, on an Argand diagram, the roots of the equation in part (ii). [1]
- (iv) Given that α is the root of the equation in part (ii) such that $0 < \arg \alpha < \frac{1}{2}\pi$, sketch on the same Argand diagram the locus given by $|z \alpha| = |z|$.

10	(i) $x^2 - y^2 = 2,2xy = \sqrt{5}$	M1 A1		Attempt to equate real and imaginary parts Obtain both results a.e.f.
	$4x^4 - 8x^2 - 5 = 0$	M1 M1		Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x (or y) values
	$x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$ $\pm (\frac{\sqrt{10}}{2} + i \frac{\sqrt{2}}{2})$	A1		Correct values for both x & y obtained a.e.f.
	(ii) $z^2 = 2 \pm i \sqrt{5}$	A1	6	Correct answers as complex numbers
	$z = \pm \left(\frac{\sqrt{10}}{2} \pm i \frac{\sqrt{2}}{2}\right)$	M1 A1 M1		Solve quadratic in z^2 Obtain correct answers Use results of (i)
		A1ft	4	Obtain correct answers, ft must include root from conjugate
	(iii)	B1ft	1	Sketch showing roots correctly
	(iv)	B1 B1ft B1ft	3 14	Sketch of straight line, \perp to α Bisector

- The complex number 3 3i is denoted by a. 6
 - (i) Find |a| and arg a.

[2]

- (ii) Sketch on a single Argand diagram the loci given by
 - (a) $|z-a| = 3\sqrt{2}$,
 - **(b)** $arg(z-a) = \frac{1}{4}\pi$. [3]
- (iii) Indicate, by shading, the region of the Argand diagram for which

$$|z-a| \ge 3\sqrt{2}$$
 and $0 \le \arg(z-a) \le \frac{1}{4}\pi$. [3]

[3]

6.	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	B1 B1	2	State correct answers
	(ii)(a) (ii)(b)	B1B1 B1 ft B1 B1 B1	3	Circle, centre $(3, -3)$, through O ft for $(\pm 3, \pm 3)$ only Straight line with +ve slope, through $(3, -3)$ or their centre Half line only starting at centre
	(iii)	B1ft B1ft B1ft	3 11	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle

- 8 The complex number a is such that $a^2 = 5 12i$.
 - (i) Use an algebraic method to find the two possible values of a.
 - (ii) Sketch on a single Argand diagram the two possible loci given by |z a| = |a|.

[5]

4725 Mark Scheme January 2010

8 (i)	M1 Attempt to equate real and imaginary parts of $(x + iy)^2 & 5 - 12i$
$x^2 - y^2 = 5$ and $xy = -6$	A1 Obtain both results, a.e.f
	M1 Obtain quadratic in x^2 or y^2
	M1 Solve to obtain $x = (\pm)3$ or $y = (\pm)2$
$\pm (3-2i)$	A1 5 Obtain correct answers as complex nos
(ii)	B1ft Circle with centre at their
square root	D1 Circle massing through spining
	B1 Circle passing through origin
	B1ft 2 nd circle centre correct relative to 1 st
	B1 4 Circle passing through origin

6 (i) Sketch on a single Argand diagram the loci given by

(a)
$$|z-3+4i|=5$$
,

(b)
$$|z| = |z - 6|$$
.

[2]

(ii) Indicate, by shading, the region of the Argand diagram for which

$$|z - 3 + 4i| \le 5$$
 and $|z| \ge |z - 6|$.

[2]

6 (i) (a)

(b)

B1B12 Circle centre (3, -4), through origin

B1B12 Vertical line, clearly x = 3

(ii)

B1ft Inside their circle

B1ft 2 And to right of their line, if vertical

6

6 (i) Sketch on a single Argand diagram the loci given by

(a)
$$|z| = |z - 8|$$
,

(b)
$$arg(z + 2i) = \frac{1}{4}\pi$$
.

(ii) Indicate by shading the region of the Argand diagram for which

$$|z| \le |z - 8|$$
 and $0 \le \arg(z + 2i) \le \frac{1}{4}\pi$.

[3]

Mark Scheme January 2011 4725 B1* Vertical line 6 (i) (a) Clearly through (4,0)depB12 Sloping line with +ve slope **(b) B**1 **B**1 Through (0, -2)Half line starting on y-axis 45° shown B1ft **3** convincingly Shaded to left of their (i) (a) (ii) B1ft B1ft Shaded below their (i) (b) must be +ve slope B1ft 3 Shaded above horizontal through their (0, -2)**NB** These 3 marks are independent, but 3/3 only for fully correct answer. 8

- 5 The complex number $1 + i\sqrt{3}$ is denoted by a.
 - (i) Find |a| and arg a.
 - (ii) Sketch on a single Argand diagram the loci given by |z a| = |a| and $\arg(z a) = \frac{1}{2}\pi$. [6]

[2]

5	(i)	a =2
100000000000000000000000000000000000000		$\arg a = 60^{\circ}, \frac{\pi}{3}, 1.05$

B1 Correct modulus

Correct argument B1

Circle **B**1

6

B1 Centre
$$(1, \sqrt{3})$$

Through origin, centre $(\pm 1, \pm \sqrt{3})$ and **B**1

another y intercept

Vertical line B1

B1* Through a or their centre, with +ve gradient

DB1 Correct half line

8

6 Sketch, on a single Argand diagram, the loci given by $|z - \sqrt{3} - i| = 2$ and $\arg z = \frac{1}{6}\pi$.

[6]

		D1	Circle	
0		B1	Circle	
		B1	Centre $(\sqrt{3},1)$	
		B1	Passing through O and crosses y-axis again	
		B 1	Line, with correct slope shown	
		B 1	$\frac{1}{2}$ line starting at O	
		B1	Completely correct diagram for both loci	Ignore shading
		[6]		

- 7 The loci C_1 and C_2 are given by |z-3-4i|=4 and |z|=|z-8i| respectively.
 - (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 .
 - (ii) Hence find the complex numbers represented by the points of intersection of C_1 and C_2 . [2]
 - (iii) Indicate, by shading, the region of the Argand diagram for which

$$|z-3-4i| \le 4 \text{ and } |z| \ge |z-8i|.$$
 [2]

[6]

Q	uestio	n	Answer	Marks	Guidance
7	(i)			B1B1	Circle, centre (3,4)
				B1ft	Touching x-axis, ft for $(3,-4)$ ere as centre
				B1ft	Crossing y-axis twice
				B1B1	Horizontal line, y intercept 4
				[6]	
7	(ii)		-1 + 4i 7 + 4i	B1B1	State correct answers
				[2]	
7	(iii)			B1ft	Inside circle or above line
				B1	Completely correct diagram
				[2]	

7 (i) Sketch on a single Argand diagram the loci given by

(a)
$$|z|=2$$
,

(b)
$$arg(z-3-i) = \pi$$
.

(ii) Indicate, by shading, the region of the Argand diagram for which

$$|z| \le 2$$
 and $0 \le \arg(z - 3 - i) \le \pi$.

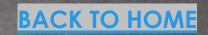
[2]

[3]

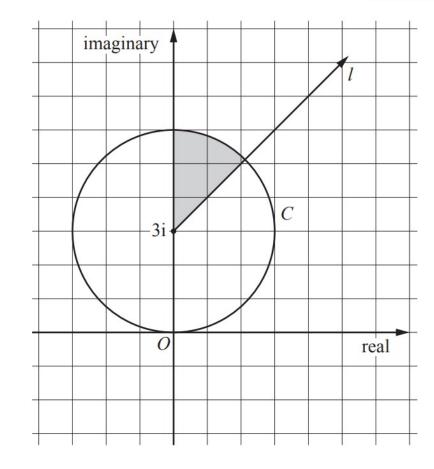
[2]

4725 Mark Scheme January 2013

Question		n	Answer	Marks	Guidance
7	(i)	(a)		B1	Circle
		33.40		B1	Centre O and radius 2
				[2]	
7	(i)	(b)		B1	Horizontal line
	92.00	20 00		B1	(3, 1) on their line
				B1	½ line to left i.e. horizontal
				[3]	
7	(ii)			B1	Shade only inside their circle or above their horizontal line
				B1	Completely correct diagram
				[2]	



OCR JUNE 2013



The Argand diagram above shows a half-line *l* and a circle *C*. The circle has centre 3i and passes through the origin.

- (i) Write down, in complex number form, the equations of l and C.
- (ii) Write down inequalities that define the region shaded in the diagram. [The shaded region includes the boundaries.]

[4]

		8	×	L. J	
6	(i)			M1	Use arg $(z - a) = \theta$ in equation for l condone missing brackets
			$\arg(z-3i) = \frac{1}{4}\pi$	A1	Obtain correct answer
				M1	Use $ z-a =k$ in equation for C, k must be real
			z-3i =3	A1	Obtain correct answer
	-	9		[4]	
	(ii)		$ z-3i \le 3$ or e.g. $x^2 + (y-3)^2 \le 9$ $\frac{1}{4}\pi \le \arg(z-3i) \le \frac{1}{2}\pi$ or $y \ge x+3$, $x \ge 0$	B1	Obtain correct inequality, or answer consistent with sensible (i)
			$\frac{1}{4}\pi \le \arg(z-3i) \le \frac{1}{2}\pi$ or $y \ge x+3$, $x \ge 0$	B1 B1	Each correct single inequality, or answer consistent with sensible (i)
				[3]	SC if < used consistently, but otherwise all correct, B2

AQA Jan 2006 FP2

3 The complex numbers z_1 and z_2 are given by

$$z_1 = \frac{1+i}{1-i}$$
 and $z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$

- (a) Show that $z_1 = i$. (2 marks)
- (b) Show that $|z_1| = |z_2|$. (2 marks)
- (c) Express both z_1 and z_2 in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (3 marks)
- (d) Draw an Argand diagram to show the points representing z_1 , z_2 and $z_1 + z_2$. (2 marks)
- (e) Use your Argand diagram to show that

$$\tan\frac{5}{12}\pi = 2 + \sqrt{3} \tag{3 marks}$$

MFP2 (cont)				
Q	Solution	Marks	Total	Comments	
3(a)	$\frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = i$	M1A1	2	AG	
(b)	$ z_2 = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 = z_1 $	M1A1	2		
(c)	r=1	B1		PI	
	$\theta = \frac{1}{2}\pi, \ \frac{1}{3}\pi$	B1B1	3	Deduct 1 mark if extra solutions	
(d)	$z_1 = \begin{bmatrix} z_1 + z_1 \\ 1 \\ \frac{1}{2}/3 \end{bmatrix}$	B2,1F	2	Positions of the 3 points relative to each other, must be approximately correct	
(e)	$\operatorname{Arg}(z_1 + z_2) = \frac{5}{12}\pi$	B1		Clearly shown	
	$\tan\frac{5}{12}\pi = \frac{1 + \frac{1}{2}\sqrt{3}}{\frac{1}{2}}$	M1		Allow if BO earned	
	$=2+\sqrt{3}$	A1	3	AG must earn BO for this	BACK TO AQA FP2
	Total		12		

AQA Jan 2006 FP2

5 The complex number z satisfies the relation

$$|z + 4 - 4i| = 4$$

(a) Sketch, on an Argand diagram, the locus of z.

(3 marks)

(b) Show that the greatest value of |z| is $4(\sqrt{2}+1)$.

(3 marks)

(c) Find the value of z for which

$$\arg(z+4-4\mathrm{i})=\tfrac{1}{6}\pi$$

Give your answer in the form a + ib.

(3 marks)

Q	Solution	Marks	Total	Comments
5(a)	K L	B1		Circle
	(4.1)	В1		Correct centre
	4 0 x	B1	3	Touching both axes
(b)	$ z \max = OK$	M1		Accept $\sqrt{4^2 + 4^2} + 4$ as a method
	$= \sqrt{4^2 + 4^2} + 4$	A1F		Follow through circle in incorrect position
	$= \sqrt{4^2 + 4^2} + 4$ $= 4(\sqrt{2} + 1)$	A1F	3	AG
(c)	Correct position of z , ie L	M1		
	$a = -\left(4 - 4\cos\frac{1}{6}\pi\right)$ $= -\left(4 - 2\sqrt{3}\right)$			
	$=-\left(4-2\sqrt{3}\right)$	A1F		Follow through circle in incorrect position
	$b=4+4\sin\frac{1}{6}\pi=6$	A1F	3	
		Total	9	

AQA June 2006 FP2

- (a) On one Argand diagram, sketch the locus of points satisfying:
 - (i) |z-3+2i|=4;

(3 marks)

(ii) $arg(z-1) = -\frac{1}{4}\pi$.

(3 marks)

Indicate on your sketch the set of points satisfying both (b)

$$|z - 3 + 2i| \le 4$$

and
$$arg(z-1) = -\frac{1}{4}\pi$$

(1 mark)

MFP2 (cont)

Q	Solution	Marks	Total	Comments
4	, i			
(a)(i)	Circle	B1		
	Correct centre	B1		
	Enclosing the origin	B1	3	
(ii)	Half line	B1		
. ,	Correct starting point	B1		
	Correct angle	B1	3	
(b)	Correct part of the line indicated	B1F	1	
	Total		7	

AQA Jan 2007 FP2

- 2 (a) Sketch on one diagram:
 - (i) the locus of points satisfying |z-4+2i|=2;

(3 marks)

(ii) the locus of points satisfying |z| = |z - 3 - 2i|.

(3 marks)

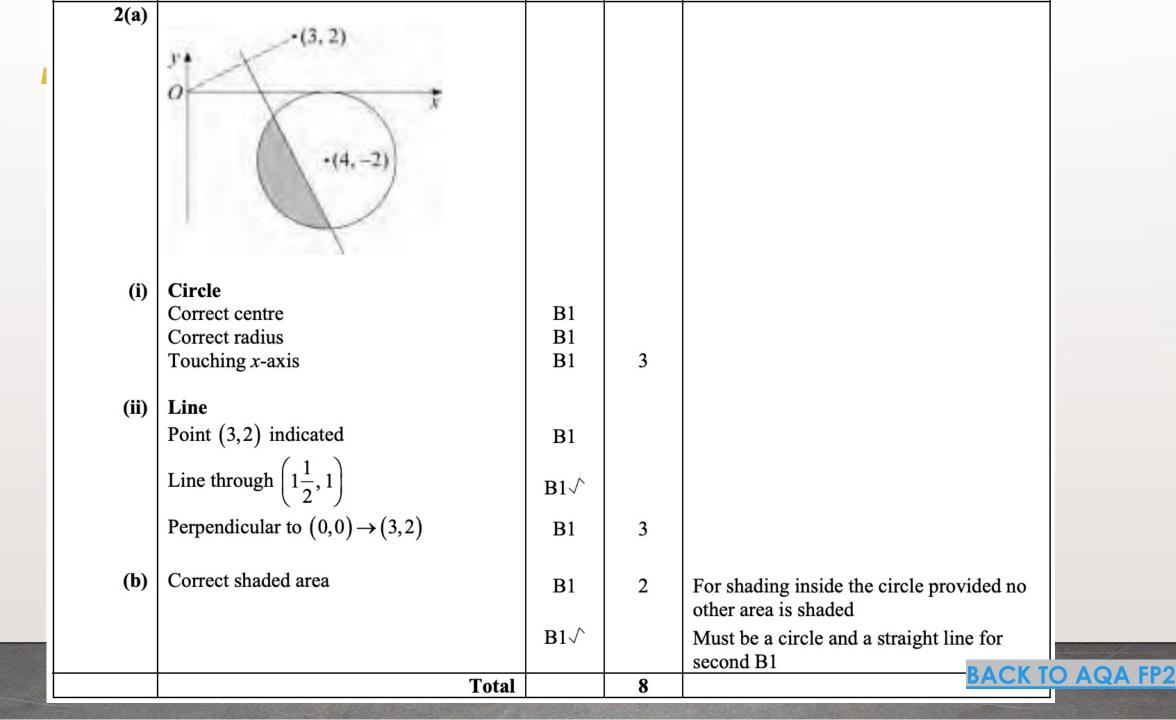
(b) Shade on your sketch the region in which

both

$$|z - 4 + 2i| \leq 2$$

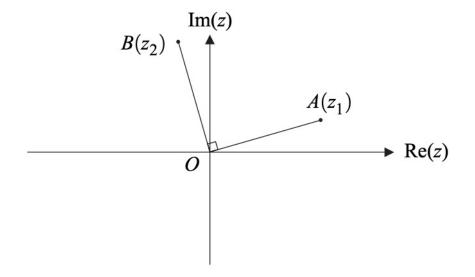
and

$$|z| \leq |z-3-2i|$$



AQA JUNE 2007 FP2

5 The sketch shows an Argand diagram. The points A and B represent the complex numbers z_1 and z_2 respectively. The angle $AOB = 90^{\circ}$ and OA = OB.



(a) Explain why $z_2 = iz_1$.

(2 marks)

- (b) On a single copy of the diagram, draw:
 - (i) the locus L_1 of points satisfying $|z z_2| = |z z_1|$;

(2 marks)

(ii) the locus L_2 of points satisfying $arg(z - z_2) = arg z_1$.

- (3 marks)
- (c) Find, in terms of z_1 , the complex number representing the point of intersection of L_1 and L_2 . (2 marks)

AQA FP2

	T. A. A. M. T.	IS.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
5(a)	Explanation	E2,1,0	2	E1 for $i = e^{\frac{\pi i}{2}}$ or $iz_1 = -y_1 + ix_1$
(b)(i)	Perpendicular bisector of AB through O	B1 B1	2	
(ii)	half-line from B parallel to OA	B1 B1 B1	3	If L_2 is taken to be the line AB give B0
(c)	$(1+i)z_1$	M1A1	2	ft if L_2 taken as line AB
	Total		9	

AQA Jan 2008 FP2

3 A circle C and a half-line L have equations

$$|z - 2\sqrt{3} - i| = 4$$

and

$$\arg(z+\mathrm{i})=\frac{\pi}{6}$$

respectively.

- (a) Show that:
 - (i) the circle C passes through the point where z = -i;

(2 marks)

(ii) the half-line L passes through the centre of C.

(3 marks)

(b) On one Argand diagram, sketch C and L.

(4 marks)

(c) Shade on your sketch the set of points satisfying both

$$|z - 2\sqrt{3} - i| \le 4$$

and

$$0 \leqslant \arg(z+\mathrm{i}) \leqslant \frac{\pi}{6}$$

AQA FP2

MFP2	(cont)
------	--------

Q	Solution	Marks	Total	Comments
3(a)(i)	$z = -i$ $\left -2\sqrt{3} - 2i \right = \sqrt{12 + 4} = 4$	M1		$\left -2\sqrt{3} - 2i \right $
		A 1	2	4
(ii)	Centre of circle is $2\sqrt{3} + i$	B1		Do not accept $(2\sqrt{3}, 1)$ unless attempt to
	Substitute into line	M1		solve using trig
	$arg \left(2\sqrt{3}+2i\right)=\frac{\pi}{6}$ shown	A1	3	
(b)	<i>y</i> •			
	Circle: centre correct	B1		
	through $(0,-1)$	B1		
	Half line: through $(0,-1)$	B1		
	through centre of circle	B1	4	
(c)	Shading inside circle and below line	B1F		
	Bounded by $y = -1$	B1	2	

AQA JUNE 2008 FP2

4 (a) A circle C in the Argand diagram has equation

$$|z+5-i|=\sqrt{2}$$

Write down its radius and the complex number representing its centre. (2 marks)

(b) A half-line L in the Argand diagram has equation

$$\arg(z+2\mathrm{i})=\frac{3\pi}{4}$$

Show that $z_1 = -4 + 2i$ lies on L.

(2 marks)

(c) (i) Show that $z_1 = -4 + 2i$ also lies on C.

(1 mark)

(ii) Hence show that L touches C.

(3 marks)

(iii) Sketch L and C on one Argand diagram.

(2 marks)

(d) The complex number z_2 lies on C and is such that $arg(z_2 + 2i)$ has as great a value as possible.

Indicate the position of z_2 on your sketch.

4(a)	radius $\sqrt{2}$ centre $-5+i$	B1,B1	2	condone (-5, 1) for centre	
				do not accept (-5, i)	
(b)	$\arg(z_1 + 2i) = \arg(-4 + 4i)$	M1			
(6)	Service and the service and th	2.132.775	200	(1)	
	$=\frac{3\pi}{4}$	A 1	2	clearly shown eg $\tan^{-1}\left(-\frac{1}{1}\right)$	
(c)(i)	$\left z_1 + 5 - i \right = \left 1 + i \right = \sqrt{2}$	B1	1,		
(ii)	Gradient of line from				
(11)					
	$(-5, 1)$ to $(-4, 2)$ is $1 \left(\frac{\pi}{4}\right)$	M1A1		M1 for a complete method	
	radius ⊥line ∴ tangent	E1	3		
	audius Zime VI umgeni	LI			
(iii)					
	Circle correct	B1F		ft incorrect centre or radius	
	Half line correct	B1	2	line must touch C generally above the circle	
(d)	z_2 in correct place	В1		B0 if z_2 is directly below the centre of C	
	with tangent shown	B1	2		
	Total		12		

BACK TO AQA FP2

AQA JAN 2009 FP2

- 2 (a) Indicate on an Argand diagram the region for which $|z 4i| \le 2$. (4 marks)
 - (b) The complex number z satisfies $|z 4i| \le 2$. Find the range of possible values of arg z. (4 marks)

AQA FP2

2(a)	<i>y</i> †	B1		Circle
		B1		Correct centre
		B1		Correct radius
	P_2 P_1	B1F	4	Inside shading
	$\frac{\alpha}{x}$			
(b)	Correct points P_1 and P_2 indicated	B1F		Possibly by tangents drawn ft mirror image of circle in x-axis
	$\sin \alpha = \frac{2}{4}$	M1		
	$\alpha = \frac{\pi}{6}$	A1		
	Range is $\frac{\pi}{3} \leqslant \arg z \leqslant \frac{2\pi}{3}$	A 1	4	Deduct 1 for angles in degrees
	Total		8	DACK TO AQ

AQA JUNE 2009 FP2

- 6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers 2+3i and -4-5i respectively. Given that the points A and B are at the ends of a diameter of a circle C_1 , express the equation of C_1 in the form $|z-z_0|=k$.

 (4 marks)
 - (b) A second circle, C_2 , is represented on the Argand diagram by the equation |z-5+4i|=4. Sketch on one Argand diagram both C_1 and C_2 . (3 marks)
 - (c) The points representing the complex numbers z_1 and z_2 lie on C_1 and C_2 respectively and are such that $|z_1 z_2|$ has its maximum value. Find this maximum value, giving your answer in the form $a + b\sqrt{5}$.

MFP2 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Centre $-1-i$ or $(-1,-1)$	B1 M1		
	Radius 5	A1F		ft incorrect centre if used
	z+1+i = 5 or z-(-1-i) = 5	A1F	4	ft $ z+1+i =10$ earns M0B1
(b)	Y +			
	O_1 O_2 O_2 O_3 O_4 O_5 O_5			
	C_1 correct centre, correct radius	B1F		ft errors in (a) but fit circles need to intersect and C_1 enclose $(0,0)$
	C_2 correct centre, correct radius	В1		mersect and \mathcal{O}_1 enclose $(0,0)$
	Touching x-axis	B1F	3	error in plotting centre
(c)	$O_1 O_2 = 3\sqrt{5}$	M1A1		allow if circles misplaced but O_1O_2 is still $3\sqrt{5}$
	Correct length identified	m1		
	Length is $9+3\sqrt{5}$	M1 A1F	5	ft if r is taken as 10
	Total		12	

AQA JAN 2010 FP2

- 2 (a) On the same Argand diagram, draw:
 - (i) the locus of points satisfying |z 4 + 2i| = 4;

(3 marks)

(ii) the locus of points satisfying |z| = |z - 2i|.

(3 marks)

(b) Indicate on your sketch the set of points satisfying both

$$|z - 4 + 2i| \leq 4$$

and

$$|z| \geqslant |z - 2i|$$

	Total		8	2 marks BACK TO AQA FP
				Whole question reflected in x-axis loses 2 marks BACK TO AGA EP
<i>i</i>	above line	B1F	2	
(b)	Shading: inside circle	B1F		
	through (0, 1)	B1	3	distance to top of circle; no other shading outside circle
	through (0, 1)	D1	2	Assume (0, 1) if distance up y-axis is half
()	parallel to x-axis	B1		
(ii)	Straight line	B1		
	Touching y-axis	B1	3	
	Correct centre	B1		correct quadrant; condone $(4,-2i)$
(a)(i)	Circle	B1		x-coordinate $\approx -2 \times y$ -coordinate in
2	<i>y</i> †		-	

AQA JUNE 2010 FP2

3 Two loci, L_1 and L_2 , in an Argand diagram are given by

$$L_1: |z+1+3i| = |z-5-7i|$$

$$L_2: \arg z = \frac{\pi}{4}$$

- (a) Verify that the point represented by the complex number 2 + 2i is a point of intersection of L_1 and L_2 . (2 marks)
- (b) Sketch L_1 and L_2 on one Argand diagram. (5 marks)
- (c) Shade on your Argand diagram the region satisfying

$$|z+1+3i| \le |z-5-7i|$$

and

$$\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2}$$

MFP2 (cont)

1	MFP2 (cont				
ļ	Q	Solution	Marks	Total	Comments
	3	(2,2) Re			
	(a)	2+2i+1+3i = 2+2i-5-7i	B1		Clearly shown do not allow $ 3+5i = -3-5i $ without comment
		$\arg(2+2i) = \frac{\pi}{4}$	B1	2	Clearly shown
	(b)	L_1 : straight line with negative gradient perpendicular to line joining	B1		
		(-1,-3) to $(5,7)$	B1		
		through $(2,2)$	B1		The point (2,2) must be shown either by (2,2) or 2+2i or with numbered axes
		L_2 : half line through O	B1		
		through $(2,2)$	B1	5	
	(c)	Shading between $\frac{\pi}{4}$ and $\frac{\pi}{2}$ Below L_1	B1 B1	2	No marks for shading if circles drawn in (b)
		Total	<i>D</i> 1	9	
H		10141		,	

AQA JAN 2011 FP2

1 (a) Sketch on an Argand diagram the locus of points satisfying the equation

$$|z - 4 + 3i| = 5$$

(3 marks)

(b) (i) Indicate on your diagram the point P representing z_1 , where both

$$|z_1 - 4 + 3i| = 5$$
 and $\arg z_1 = 0$

(1 mark)

(ii) Find the value of $|z_1|$.

(1 mark)

Mark Scheme - General Certificate of Education (A-level) Mathematics - Further Pure 2 - January 2011

MFP2

Q	Solution	Marks	Total	Comments
1(a)	Circle correct centre through $(0, 0)$	B1 B1 B1	3	
(b)(i)	z_1 correctly chosen	B1F	1	ft if circle encloses (0, 0)
(ii)	$ z_1 = 8$	B1F	1	ft if centre misplotted
	Total		5	
4/->				

AQA JUNE 2011 FP2

- 1 (a) Draw on the same Argand diagram:
 - (i) the locus of points for which

$$|z - 2 - 5i| = 5$$

(3 marks)

(ii) the locus of points for which

$$\arg(z+2i)=\frac{\pi}{4}$$

(3 marks)

(b) Indicate on your diagram the set of points satisfying both

$$|z-2-5i| \leq 5$$

and

$$\arg(z+2i)=\frac{\pi}{4}$$

MFP2

Q	Solution	Marks	Total	Comments
1(a)	Im			Use average of whole question if 2 diagrams used
(i)	Circle correct centre touching x-axis	B1 B1 B1F	3	Circle in any position Must be shown ft incorrect centre
(ii)	half-line through $(0, -2)$ through point of contact of circle with x-axis	B1 B1 B1	3	Can be inferred
(b)	Inside circle On line	B1 B1F	2	ft errors in position of line and circle
	Total		8	

AQA JAN 2012 FP2

- 2 (a) Draw on an Argand diagram the locus L of points satisfying the equation $\arg z = \frac{\pi}{6}$.

 (1 mark)
 - (b) (i) A circle C, of radius 6, has its centre lying on L and touches the line Re(z) = 0. Draw C on your Argand diagram from part (a). (2 marks)
 - (ii) Find the equation of C, giving your answer in the form $|z z_0| = k$. (3 marks)
 - (iii) The complex number z_1 lies on C and is such that $\arg z_1$ has its least possible value. Find $\arg z_1$, giving your answer in the form $p\pi$, where -1 . (2 marks)

Q	Solution	Marks	Total	Comments
2(a)	$rac{1}{z_1}$			
	Half-line with gradient < 1	В1	1	condone a short line, ie it stops at or inside circle
(b)(i)	Circle centre on L, x-coord 6 indicated touching Re $z = 0$ not at $(0, 0)$	B1 B1	2	not touching Re axis
(ii)	y-coord of centre is $2\sqrt{3}$ or $\frac{6}{\sqrt{3}}$	В1		OE; PI
	$z_0 = 6 + 2\sqrt{3} i,$ $k = 6$	B1F, B1	3	ft error in coords of centre
(iii)	Point z_1 shown	B1		PI
	$\arg \mathbf{z}_1 = -\frac{1}{6}$	B1	2	
	Total		8	

AQA JUNE 2012 FP2

- **2 (a)** Draw on the Argand diagram below:
 - (i) the locus of points for which

$$|z - 2 - 3i| = 2$$

(3 marks)

(ii) the locus of points for which

$$|z + 2 - i| = |z - 2|$$

(3 marks)

(b) Indicate on your diagram the points satisfying both

$$|z - 2 - 3i| = 2$$

and

$$|z + 2 - \mathbf{i}| \le |z - 2|$$

(1 mark)

MFP2

Q	Solution	Marks	Total	Comments
2(:	(2, 3) Re			
	Circle Correct centre Touching Im axis	B1 B1 B1	3	Convex loop Some indication of position of centre
(i	Straight line well to left of centre	B1		$\frac{1}{2}$ line through $(0, \frac{1}{2})$ B0
	through $(0,\frac{1}{2})$	B1		Point approximately between 0 and 1
	\perp to line joining (-2,1) and (2,0) NB 0/3 for line parallel to x-axis	В1	3	
	0/3 for line joining the two points (-2, 1) and (2,0)			
	0/3 for line joining (0,0) to centre of circle			
(1	,	B1F	1	ft incorrect position of line or circle
11	Total		7	

AQA JAN 2013 FP2

Two loci, L_1 and L_2 , in an Argand diagram are given by

$$L_1: |z + 6 - 5i| = 4\sqrt{2}$$

$$L_2: \arg(z+i) = \frac{3\pi}{4}$$

The point P represents the complex number -2 + i.

- (a) Verify that the point P is a point of intersection of L_1 and L_2 . (2 marks)
- (b) Sketch L_1 and L_2 on one Argand diagram. (6 marks)
- (c) The point Q is also a point of intersection of L_1 and L_2 . Find the complex number that is represented by Q. (2 marks)

N	IFP2 (cont)				
	Q	Solution	Marks	Total	Comments
	2(a)	$ 4-4i = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}$ $arg(-2+2i) = \pi - tan^{-1}(1) = \frac{3\pi}{4}$	B1 B1	2	verification that $ -2+i+6-5i = 4\sqrt{2}$ verification that arg $(z+i) = \frac{3\pi}{4}$
		Im			
	(b)	Circle	M1		freehand circle sketched
		Centre at $-6 + 5i$	A1		clear from diagram or centre stated
		Cutting Re axis but not cutting Im axis	A1		
		"Straight" line Half line from 0 – i gradient –1 (approx)	M1 A1 A1	6	freehand line not horizontal or vertical but end point at 0 - i must be clear from diagram/stated making 45° to negative Re axis and
	(c)	Calculation based on fact that L_2 passes			positive Im axis
	(0)	through centre of L_1	M1		idea of vector $\begin{bmatrix} -4\\4 \end{bmatrix}$ from centre
		Q represents $-10 + 9i$	A1	2	must write as a complex number
\vdash		Total		10	
Ь		10141		10	

AQA JUNE 2013 FP2

1 (a) Sketch on an Argand diagram the locus of points satisfying the equation

$$|z - 6i| = 3 (3 marks)$$

- (b) It is given that z satisfies the equation |z 6i| = 3.
 - (i) Write down the greatest possible value of |z|. (1 mark)
 - (ii) Find the greatest possible value of arg z, giving your answer in the form $p\pi$, where -1 .

Circle Centre at 6i Radius 3 & cutting positive Im axis twice (b)(i) (Max $ z $ is) 9 B1 1 (ii) Tangent from O to circle Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked (Max $arg z$ is) $\frac{2\pi}{3}$ Alcso 3 freehand circle 6 marked on Im axis as centre radius of 3 clearly indicated with circle in position shown FT their circle position PI; condone degrees for first A1	Q	Solution	Marks	Total	Comments
Centre at 6i Radius 3 & cutting positive Im axis twice (b)(i) (Max $ z $ is) 9 B1 1 (ii) Tangent from O to circle Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked A1 O A1 O A1 O A2 A1 A2 A3 A3 A3 A4 A4 A4 A4 A4 A4 A4	1(a)	9 6 1			
Radius 3 & cutting positive Im axis twice (b)(i) $(Max z \text{ is })$ 9 (ii) Tangent from O to circle Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked A1 3 radius of 3 clearly indicated with circle position shown FT their circle position PI; condone degrees for first A1		Circle	M1		freehand circle
(b)(i) $(\text{Max } z \text{ is })$ 9 B1 1 (ii) Tangent from O to circle M1 FT their circle position Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked A1 PI; condone degrees for first A1		Centre at 6i	A1		6 marked on Im axis as centre
(ii) Tangent from O to circle M1 FT their circle position Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked A1 PI; condone degrees for first A1		Radius 3 & cutting positive Im axis twice	A1	3	radius of 3 clearly indicated with circle in position shown
Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked A1 PI; condone degrees for first A1	(b)(i)	(Max z is) 9	B1	1	
	(ii)	Tangent from O to circle	M1		FT their circle position
(Max arg z is) $\frac{2\pi}{3}$ Alcso 3 exactly this		Angle of $\frac{\pi}{6}$ or $\frac{\pi}{3}$ correctly marked	A1		PI; condone degrees for first A1
		(Max arg z is) $\frac{2\pi}{3}$	A1cso	3	exactly this
Total 7		Total		7	

